Áp dụng định lý Pi-ta-go vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\\
\Rightarrow BC=\sqrt{3^2+4^2}\\
\Rightarrow BC=5\left(cm\right)\)
Ta có: \(S_{ABC}=\dfrac{AB.AC}{2}\)
Ta lại có: \(S_{ABC}=\dfrac{AH.BC}{2}\)
\(\Rightarrow\dfrac{AB.AC}{2}=\dfrac{AH.BC}{2}\\ \Rightarrow AB.AC=AH.BC\\ \Rightarrow3.4=5.AH\\ \Rightarrow AH=\dfrac{12}{5}\left(cm\right)\)
\(AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=\dfrac{12}{5}cm\)
e tự trình bày ra