Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng
Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng
Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng
Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)
Cho tam giác ABC gọi điểm D nằm trên cạnh BC sao cho BD=2DC, E là trung điểm của AD. Một đường thẳng bất kì qua E và cắt các cạnh AB AC , lần lượt tại M N. Tính tỉ số \(\dfrac{AB}{AM}+2\dfrac{AC}{AN}\)
Cho tam giác vuông ABC (∠A = 900) có cạnh BC = 2AB, tia phân giác của ∠ABC cắt AC tại D, gọi E là trung điểm của cạnh BC.
1) Chứng minh DE vuông góc với BC.
2) Chứng minh rằng BD = DC.
3) Tính ∠B, ∠C của tam giác ABC.
Bài 1. Cho tam giác ABC , gọi M là điểm trên cạnh BC sao cho MC = 2MB
1) Phân tích vecto AM theo vecto AB, vecto AC
2) Gọi D là trung điểm của AC, phân tích vecto MD theo vecto BA, vecto BC
3) Gọi E là trung điểm của BD . Chứng minh A, E, M thẳng hàng
4) Phân tích vecto BC theo vecto BD, vecto AM
Cho tam giác ABC có trung tuyến AM điểm K thuộc AC sao cho AK=1/3 AC a. Phân tích vecto BK vecto BA và vecto BC b. Gọi I là trung điểm của AM. Chứng minh 3 điểm B, I, K thẳng hàng
Cho tam giác ABC. M, D lần lượt là trung điểm AB, BC. N trên cạnh AC sao cho CN = 2NA. Lấy K là trung điểm của MN. Phân tích vecto KD theo 2 vecto AB và AC.
Cho tam giác ABC. Gọi M, N, I lần lượt là các điểm thảo mãn 2AM+2BM=2IA+3IB-IC=0
1) Phân tích vecto AM, AI theo AB, AC
2) Chứng minh: 3 điểm C, N, I thẳng hàng
Cho tam giác vuông ABC vuông tại A ; AC = 2AB. Gọi H là chân đường cao kẻ từ A của tâm giác ABC. Biết \(\overrightarrow{AH}\)= m\(\overrightarrow{AB}\)+k\(\overrightarrow{AC}\) . Giá trị của biểu thức S = 10m + 2020k bằng:
A. 1618
B. 1350
C. 680
D. 412
cho tam giác ABC trung tuyến AD. Gọi M là trung điểm AD, xét N ch bởi véc tơ AC bằng 3 lần véc tơ AN . CMR : B , M , N thẳng hàng