Bài 18: Cho tam giác ABC, A=90 độ đường phân giác BE. Kẻ EH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:
a/ AE = EH b/Tam giác ABC=Tam giác HBK c/ AH // KC
d/ Nếu cho góc ABC=60 độ. Chứng minh: AC + KH > 3.AH
Cho tam giác ABC vuông tại A, đường cao AH . Tia phân giác của góc HAB và
HAC cắt BC lần lượt tại M và N. Chứng minh các đường phân giác của góc B, góc C và trung trực của MN đồng quy tại một điểm.
Cho tam giác ABC vuông tạ A. Kẻ đường cao AH. Từ H kẻ HI vuông góc với AB và HK vuông góc với AC.
1. Chứng minh HI vuông góc với HK.
2. Chứng minh IK = AH.
3. Gọi O là giao điểm của AH và IK. Chứng minh OI = OK = OA = OH.
4. Gọi M là trung điểm của cạnh huyền BC. Chứng minh AM vuông góc với KI.
cho tam giác ABC cân tại A có đường cao AH,CK cắt nhau tại G.a, CM BH=CK.b, CM GBC CÂN.c,gọi i là trung điểm AB ,trên tia đối IG Lấy e sao cho IG=IE.CM BE vuông góc BC
Cho tam giác ABC vuông tại A ,BD là tia phân giác góc B ,kẻ DE vuông góc BC tại góc E. a /chứng minh tam giác ABD bằng tam giác EBD b/ Tính BE biết BC = 15 cm, AC = 12 cm c/ Gọi M ,N lần lượt là trung điểm của AB và BE, K là giao điểm của AN với BD .Chứng minh ba điểm E,K,M thẳng hàng
Cho tam giác ABC cân tại A(A<90 độ),vẽ AH vuông góc với BC tại H.Chứng minh tam giác ABH=tam giác ACH.Cho biết AH=4,BH=3.Tính AB.Qua H vẽ đường thẳng song song với BC cắt AB tại M.Gọi G là giao điểm của CM và AH.
Chứng minh G là trọng tâm của tam giác ABC và tính AG.
Chứng minh CG<(CA+AB)/3
Cho tam giác ABC có AB=AC=10cm, BC=12cm. Vẽ AH vuông góc BC tại H a) Chứng minh tam giác AHB=tam giác AHC, từ đó chứng minh AH là tia phân giác của góc A b) Tính độ dài AH c) Từ B kẻ Bx vuông góc AB, từ C kẻ Cy vuông góc AC, chúng cắt nhau tại O. Tam giác ABC là tam giác gì, vì sao?
Cho tam giác ABC vuông tại A góc C= 30 độ. Đường cao AH. trên đoạn thẳng HC lấy điểm D sao cho HD=HB
a, C/m tam giác AHB= tam giác AHD
b,C/m tam giác ABD là tam giác đều
c, từ C kẻ CE vuông góc đường thẳng AD(E thuộc đường thẳng AD) đường CE cắt AH tại Q. Gọi K là trung điểm AC. C/m CB là tia phân giác góc ACQ và ba điểm Q,D,K thẳng hàng
Cho tam giác ABC vuông tại A có AB = 6cm, BC =10 cm.
a. Tính độ dài cạnh AC rồi so sánh các góc trong tam giác ABC.
b. Gọi trung điểm của AC là M. Vẽ đường thẳng vuông góc với AC tại M, đường thẳng này cắt AC tại I. Chứng minh tam giác AIM = tam giác CIM.
c. Chứng minh AI =\(\dfrac{1}{2}\) BC.
d. Hai đoạn thẳng BM và AI cắt nhau tại G. Chứng minh BC = 6.IG.