Cho tam giác ABC vuông tại A có đường cao AH a. Chứng minh tam giác ABC đồng dạng tam giác HBA b. Cho biết BH =2cm, BC =6cm.tính AB c. Đường phân giác của góc B cắt AH tại I.chứng minh IA×AH=IH×AC
Cho ABC vuông tại A (AB > AC). AM là đường trung tuyến. Kẻ đường thẳng vuông góc với AM tại M lần lượt cắt AB tại E, cắt AC tại F. a. Chứng minh tam giác MBE đồng dạng tam giác MFC
b. Chứng minh AE. AB = AC. AF
c. Đường cao AH của tam giác ABC cắt EF tại I.
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH.
a, Chứng minh tam giác BHA ~ tam giác BAC. Từ đó suy ra BA2 = BH.BC
b, Lấy I thuộc AH. Kẻ đường thẳng đi qua B và vuông góc với CI tại K. Chứng minh rằng: CH.CB = CI.CK
c, Tia BK cắt HA tại D. Trên tia đối của tia KC lấy điểm M sao cho BM = BA. Chứng minh rằng góc BMD = 90o
Cho △ABC vuông tại A (AB>AC) AM là đường trung tuyến . Kẻ đường thẳng vuông góc với AM tại M lần lược cắt AB tại E , cắt AC tại F a. Chứng minh △MBE ∼ △MFC b. Chứng minh AE . AB = AC . AF c. Đường cao AH của △ABC cắt EF tại I Chứng minh \(\dfrac{S_{ABC}}{S_{AEF}}=\left(\dfrac{AM}{AI}\right)^2\)
Cho tam giác ABC vuông tại A ( AB > AC ) . AM là đường trung tuyến . Kẻ đường thẳng vuông góc với AM tại M lần lược cắt AB tại E , cắt AC tại F a. Chứng minh △MBE∼ △MFC b. Chứng minh AE.AB = AC.AF c. Đường cao AH của △ABC cắt EF tại I Chứng minh \(\dfrac{S_{ABC}}{S_{AEF}}\)= (\(\dfrac{AM}{AI}\))2
Cho tam giác ABC nhọn ( AB < AC ), 2 đường cao là AH và BK cắt nhau tại I.
a) Chứng minh tam giác BIH đồng dạng tam giác AIK và IA . IH = IB. IK
b) Qua B kẻ đường vuông góc với AB cắt tia AH tại F. Chứng minh tam giác BIA đồng dạng tam giác HIK và góc BKH = góc HBE
c) Kẻ phân giác AD của tam giác ABC. Cho AB= 8cm, AC= 12cm và CD - BD =6cm. Tính độ dải BD, CD
d) Chứng minh IB/IE = AH/BK
Cho tam giác ABC vuông tại A với AB<AC, vẽ đường cao AH, vẽ trung tuyến AM. Tia phân giác của góc ABC cắt AH, AM và AC theo thứ tự tại E, F và I.
a) Chứng minh AB2= BH.BC và AB. AC= AH.BC.
b) Chứng minh EH.IC=EA.IA
cho tam giác ABC vuông tại A(AB<AC),đường trung tuyến AM.Qua M kẻ đường thẳng vuông góc với AM cắt AB tại E và cắt AC tại F.Kẻ AH vuông góc với BC,AH cắt EF tại I.Cm
a)góc BAM=góc ABM
b)góc ACB=góc AEF=>tam giác MBE đồng dạng với tam giác MFC
c)AB.AE=AC.AF
Cho tam giác ABC vuông tại A, có AB/BC = 4/5; AC=18cm. Vẽ đường phân giác BD của tam giác ABC. trên cạnh AB lấy H sao cho AH/AB=1/3, từ B vẽ đường thẳng vuông góc với HC tại E, đường thẳng BE cắt AC tại F.
a)Tính AD, DC
B)Chứng minh tam giác HAC đồng dạng tam giác HEB
c)Chứng minh AF.AC=1/3AB2
d)Trên tia đối của tia FA, lấy M sao cho FM=2FA.
Chứng minh MB vuông góc BC
Chỉ dùng kiến thức lớp 8, em cảm ơn