Cho tam giác ABC vuông tại A. Các đường phân giác của góc B, C cắt nhau tại I. Hình chiếu của IB và IC trên BC có độ dài lần lượt là m và n. Tính diện tích tam giác ABC theo m và n
Cho tam giác ABC vuông tại A. Các đường phân giác của góc B, C cắt nhau tại I. Hình chiếu của IB và IC trên BC có độ dài lần lượt là m và n. Tính diện tích tam giác ABC theo m và n
cho tam giac ABC cân tại A gọi M,O lần lượt là trung điểm BC, AC. gọi N là điểm đối xứng với M qua O
a.tính diện tích tam giác ABC biết AB=5cm,Bc=6cm
b.tứ giác AMCN là hình gì? vì sao?
c.tam giác ABC có thêm điều kiện gì thì tứ giác AMCN là hình vuông
Cho tam giác ABC có: \(3.\widehat{BAC}+2.\widehat{ABC}=180\) độ và số đo 3 cạnh của tam giác là 3 số chắn liên tiếp. Tính chu vi của tam giác ABC
Cho tam giác ABC, gọi O là giao 3 đường phân giác trong tam giác; trên 2 cạnh AB; AC lần lượt lấy hai điểm M và N thỏa mãn: BM.BC=\(BO^2\); CN.CB=\(CO^2\). CMR:
a) Tam giác MBO đồng dạng với 2 tam giác OBC, NOC
b) AO vuông góc với MN
Cho tam giác ABC, gọi O là giao 3 đường phân giác trong tam giác; trên 2 cạnh AB; AC lần lượt lấy hai điểm M và N thỏa mãn: BM.BC=\(BO^2\); CN.CB=\(CO^2\). CMR:
a) Tam giác MBO đồng dạng với 2 tam giác OBC, NOC
b) AO vuông góc với MN
Cho tam giác ABC, gọi O là giao 3 đường phân giác trong tam giác; trên 2 cạnh AB; AC lần lượt lấy hai điểm M và N thỏa mãn: BM.BC=\(BO^2\); CN.CB=\(CO^2\). CMR:
a) Tam giác MBO đồng dạng với 2 tam giác OBC, NOC
b) AO vuông góc với MN
Bài 1: Cho tam giác ABC vuông tại A ( AB>AC), AM là đường trung tuyến, kẻ đường thẳng vuông góc với AM tại M lần lượt cắt AB tại E, cắt AC tại F.
a) chứng minh: tam giác MBE đồng dạng tam giác MFC
b) Chứng minh: AE.AB=AF.AC
c) Đường cao AH của tam giác ABC cắt EF tại I. Chứng minh: \(\dfrac{S_{ABC}}{S_{AEF}}=\left(\dfrac{AM}{AI}\right)^2\)
Bài 2: Cho E= x2-2x+2022
a) Chúng minh: E>0 với mọi x
b) Tìm GTLN của: A=\(\dfrac{2020}{x^2-2x+2022}\)
cho tam giác nhọn ABC, các đường cao AD và BE cắt nhau tại H. Vẽ các đường trung trực OM và ON của các cạnh BC, CA (O là giao điểm của hai đường trung trực, M và N lần lượt là trung điểm của các cạnh BC và CA). Gọi G là trọng tâm của tam giác ABC. Tính tỉ số các diện tích của hai tam giác AHG và AOG