\(\overrightarrow{MB}=\frac{2}{3}\overrightarrow{MA}\)
Ta có: \(\overrightarrow{IA}=m\overrightarrow{IM}+n\overrightarrow{IB}\)
\(\Leftrightarrow\overrightarrow{IM}+\overrightarrow{MA}=m\overrightarrow{IM}+n\left(\overrightarrow{IM}+\overrightarrow{MB}\right)\)
\(\Leftrightarrow\overrightarrow{IM}+\overrightarrow{MA}=m\overrightarrow{IM}+n\overrightarrow{IM}+\frac{2}{3}n\overrightarrow{MA}\)
\(\Leftrightarrow\left(1-m-n\right)\overrightarrow{IM}=\left(\frac{2}{3}n-1\right)\overrightarrow{MA}\)
Do I bất kì nên \(\overrightarrow{IM}\) và \(\overrightarrow{MA}\) chưa chắc cùng phương, vậy đẳng thức luôn đúng khi và chỉ khi:
\(\left\{{}\begin{matrix}1-m-n=0\\\frac{2}{3}n-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=\frac{3}{2}\\m=-\frac{1}{2}\end{matrix}\right.\)