Ôn tập chương I

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho tam giác ABC có trung tuyến AM. Trên cạnh AC lấy hai điểm E và F sao cho AE = EF = FC. BE cắt trung tuyến AM tại N. Tính \(\overrightarrow{AE}+\overrightarrow{AF}+\overrightarrow{AN}+\overrightarrow{MN}\) ?

Bùi Thị Vân
17 tháng 5 2017 lúc 15:59

A B C M E F N
Nối M với E.
Có MF là đường trung bình tam giác BEC nên MF//BE.
Xét tam giác AMC có E là trung điểm của AF, MF//BE nên BE đi qua trung điểm của AM hay N là trung điểm của AM.
\(\overrightarrow{AE}+\overrightarrow{AF}+\overrightarrow{AN}+\overrightarrow{MN}=\left(\overrightarrow{AF}+\overrightarrow{FC}\right)+\left(\overrightarrow{AN}+\overrightarrow{MN}\right)\)
\(=\overrightarrow{AC}+\overrightarrow{0}=\overrightarrow{AC}.\)


Các câu hỏi tương tự
Quỳnh Như
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Chan
Xem chi tiết
Ngọc Trương
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Ngọc Anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết