a, Xét △BHD và △BHD có :
BH chung
\(\widehat{BHD}=\widehat{BHC}=90^0\)
HD = HC
\(\Rightarrow\)△BHD = △BHD (c.g.c)
\(\Rightarrow\) BC = BD
b, Vì D nằm giữa A và H
\(\Rightarrow\)HD < HA
mà HD = HC
\(\Rightarrow\) HA > HC
c, Xét △BDI có IK và DH là 2 đường cao
mà IK cắt DH tại A
\(\Rightarrow\)A là trực tâm △BDI
\(\Rightarrow\) BA ⊥ DI
d, Vì AB ⊥ DI
AB ⊥ BC
\(\Rightarrow\) BC // ID
\(\Rightarrow\) \(\widehat{BCA}=\widehat{IDC}\)
Để △BDI đều thì △BDI cân tại D và \(\widehat{BDI}=60^0\)
△BDI cân tại D ⇔ DH là đường cao đồng thời là đường phân giác
\(\Rightarrow\widehat{IDC}=\widehat{CDB}=\frac{\widehat{BDI}}{2}\)
mà \(\widehat{BDI}=60^0\Rightarrow\widehat{IDC}=30^0\)
mà \(\widehat{BCA}=\widehat{IDC}\)
\(\Rightarrow\widehat{BCA}=30^0\)
Vậy để △BDI đều thì △ABC có \(\widehat{BCA}=30^0\)