Cho tam giác ABC có góc B và góc C nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD = AB, trên tia đối của tia AC lấy điểm E sao cho AE = AC
a) Chứng minh rằng BE = CD
b) Gọi M là trung điểm của BE, N là trung điểm của CD. Chứng minh A là trung điểm của MN
c) Ax là tia bất kì nằm giữa hai tia AB và Ac, Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Chứng minh BH + CK \(\le\) BC
d) Xác định vị trí của tia Ax để tổng BH + CK có giá trị lớn nhất
Nhanh nha 1h mik nộp r
a: Xét tứ giác BEDC có
A là trung điểm của BD
A là trung điểm của CE
Do đó: BEDC là hình bình hành
Suy ra: BE=CD
b: Xét tứ giác EMCN có
EM//CN
EM=CN
Do đó: EMCN là hình bình hành
Suy ra: Hai đường chéo EC và MN cắt nhau tại trung điểm của mỗi đường
hay M,A,N thẳng hàng