Hình học lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Kim Hue

Cho tam giác ABC có góc B và góc C là hai góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD = AB, Trên tia đối của tia AC lấy điểm E sao cho AE = AC.

a) Chứng minh rằng BE = CD

b) Gọi M là trung điểm của BE, N là trung điểm của CD. Chứng minh rằng M,A,N thẳng hàng

c) Ax là tia bất kì nằm giữa hai tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Chứng minh rằng BH+CK < hoặc= BC

d) Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.

Hoàng Thị Ngọc Anh
21 tháng 2 2017 lúc 23:10

E D C B H K x M N A

a) Xét \(\Delta BEA\)\(\Delta DCA\) có:

AE = AC (gt)

\(\widehat{BAE}=\widehat{DAC}\) (đối đỉnh)

AB = AD (gt)

\(\Rightarrow\Delta BEA=\Delta DCA\) (c.g.c)

\(\Rightarrow BE=CD\) (2 cạnh t/ư)

b) Ta có: \(BM=\frac{1}{2}BE\) (M là tđ)

\(DN=\frac{1}{2}CD\) (N là tđ)

mà BE = CD \(\Rightarrow BM=DN\)

\(\Delta BEA=\Delta DCA\) (câu a)

\(\Rightarrow\widehat{EBA}=\widehat{CDA}\) (so le trong)

hay \(\widehat{MBA}=\widehat{NDA}\)

Xét \(\Delta ABM\)\(\Delta ADN\) có:

AB = AD (gt)

\(\widehat{MBA}=\widehat{NDA}\) (c/m trên)

BM = DN (c/m trên)

\(\Rightarrow\Delta ABM=\Delta ADN\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{DAN}\) (2 góc t/ư)

\(\widehat{DAN}+\widehat{NAB}=180^o\) (kề bù)

\(\Rightarrow\widehat{BAM}+\widehat{NAB}=180^o\)

\(\Rightarrow M,A,N\) thẳng hàng.


Các câu hỏi tương tự
Kamui
Xem chi tiết
Sương Đặng
Xem chi tiết
Tớ cuồng xô
Xem chi tiết
Kim Hue Truong
Xem chi tiết
Đỗ thị như quỳnh
Xem chi tiết
Phương Thảo
Xem chi tiết
Phương Thảo
Xem chi tiết
Miko
Xem chi tiết
Trịnh Châu
Xem chi tiết