a)AD là tia phân giác\(\Rightarrow\widehat{BAD}=\widehat{DAC}=60^o\left(=\widehat{FAB}\right)\)
Xét\(\Delta FAD:FA=AD\Rightarrow\Delta FAD\) cân tại A\(\Rightarrow\widehat{AFD}=\widehat{ADF}=\dfrac{\widehat{FAD}}{2}=\dfrac{60^o}{2}=30^o\)
Có\(\widehat{FAB}=\widehat{CAE}\)do đối đỉnh.
\(\Rightarrow\widehat{DAE}=\widehat{DAC}+\widehat{CAE}=120^o\)
Xét \(\Delta FAD\) và \(\Delta DAE\) có:
AD chung
\(\widehat{FAD}=\widehat{DAE}\left(=120^o\right)\)
AF=AE
\(\Rightarrow\Delta FAD=\Delta DAE\left(c.g.c\right)\)
\(\Rightarrow\widehat{FDA}=\widehat{EDA}=30^o\)(2 góc tương ứng);FD=ED(2 cạnh tương ứng)
Có\(\widehat{FDE}=\widehat{FDA}+\widehat{ADE}=60^o\)
Thấy\(\Delta DEF\) có:FD=ED,\(\widehat{FDE}=60^o\)
\(\Rightarrow\Delta DEF\) đều