cho tam giác ABC có G là trọng tâm , I là trung điểm của AB . a) phân tích vecto CI và AG theo vecto BA và BC. b) gọi E,F là 2 điểm thỏa : 4 vecto BE- vecto BC = vecto không, vecto FA = m vecto AC . Tìm m để E,F,I thẳng hàng
1. Cho tam giác ABC có trọng tâm G M là trung điểm BC I là điểm đối xứng với B qua G . Phân tích vectơ MI theo vectơ AB và vectơ AC
2. Cho▲ABC M là trung điểm của BC sao cho MB=2MC . CMR: vecto AM=1/3 vecto AB +2/3 vecto AC
cho tam giác ABC . gọi M là điểm thuộc cạnh AB , N là điểm thuộc cạnh AC sao cho AM =\(\dfrac{1}{3}\) AB , AN =\(\dfrac{3}{4}\) AC . gọi O là giao điểm của CM và BN
a) Biểu diễn vecto \(\overrightarrow{AO}\) theo 2 vecto \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b) trên đường thẳng BC lấy E . Đặt \(\overrightarrow{BE}\)= x.\(\overrightarrow{BC}\) . tìm x để A,O ,E thẳng hàng
cho hình chữ nhật ABCD. F là trung điểm của cạnh CD,E là điểm xác định bởi AB = 2EA.Gọi G là trọng tâm tam giác BEF.Phân tích vecto DG theo hai vecto AB,AD
Cho △ABC, điểm I∈ BC kéo dài:IB=3IC,
điểm J∈ AC:JA=2JC,
điểm K ∈ AB:KA=3KB.
a, Biểu diễn vecto AI theo vecto AB,AC
b, Biểu diễn vecto JK theo vectơ AB,AC
c, Biểu diễn vecto BC theo vecto AI,JK.
Cho tam giác abc, g là trọng tâm và i là điểm đối xứng vg qua b
a) ib bằng mấy lần ie. Vì sao
b) cm vecto ia - 5vecto ib + becto ic= 0
c) đặt vecto ag= vecto a, vecto ai= vecto b. Tính vecto ab,ac theo vecto a,b
1)cho G là trọng tâm của tam giác ABC. chứng minh vecto BA + vecto BC= vecto 3BG
2) cho tam giác abc có trọng tâm G.Gọi các điểm D,E,F lần lượt là trung điểm của các cạnh BC,CA và AB.chứng minh vecto AG=2/3 vecto AE=2/3 vecto AF.
mọi người giúp em với ạ!! em cảm ơn