cho tam giác ABC có E,F,M lần lượt là trung điểm AB,AC,BC I là điểm đối xứng M qua E,K đối xứng M qua F a) chứng minh AEMF là hình bình hành b) ABC có thêm điều kiện gì để AEMF là hình chữ nhật c)chứng minh AMCK là hình bình hành d)tam giác ABC có thêm điều kiện gì để AMCK là hình chữ nhật e)chứng minh EK = BI f)chứng minh A là trung điểm IK
a) Xét ΔABC có
M là trung điểm của BC(gt)
F là trung điểm của AC(gt)
Do đó: MF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
Suy ra: MF//AB và \(MF=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà E\(\in\)AB và \(AE=\dfrac{AB}{2}\)(E là trung điểm của AB)
nên MF//AE và MF=AE
Xét tứ giác AEMF có
MF//AE(cmt)
MF=AE(cmt)
Do đó: AEMF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Hình bình hành AEMF trở thành hình chữ nhật khi \(\widehat{BAC}=90^0\)
c) Xét tứ giác AMCK có
F là trung điểm của đường chéo AC
F là trung điểm của đường chéo MK
Do đó: AMCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)