a: Xét ΔABC có AE/AB=AF/AC
nên FE//BC
=>BEFC là hình thang
b: Xét tứ giác ABCM có
F là trung điểm chung của AC và BM
nên ABCM là hình bình hành
Suy ra: AB=MC
c: Xét ΔMBC có
MF/MB=MK/MC
nên FK//BC
mà EF//BC
nên E,F,K thẳng hàng
a: Xét ΔABC có AE/AB=AF/AC
nên FE//BC
=>BEFC là hình thang
b: Xét tứ giác ABCM có
F là trung điểm chung của AC và BM
nên ABCM là hình bình hành
Suy ra: AB=MC
c: Xét ΔMBC có
MF/MB=MK/MC
nên FK//BC
mà EF//BC
nên E,F,K thẳng hàng
Cho tam giac ABC có AB<AC . Lấy D, E lần lượt là trung điểm của AB, AC.
d) Chứng minh tứ giác BDEC là hình thang.
e) Gọi M là điểm đối xứng của B qua E. Chứng minh: Tứ giác ABCM là hình bình hành.
f) Gọi N là điểm đối xứng của C qua D. Chứng minh ba điểm N, A, M thẳng hàng.
Cho tam giác abc nhọn(ab<ac),Gọi D và E lần lượt là trung điểm của Ab và AC
a) Chứng Minh tứ gics BDEC là hình thang
b)Qua D kẻ Dx song song với AC cắt BC tại F,gọi G là trung điểm của DC.CM:3 điểm E;G;F thẳng hàng
c)Gọi H là giao điểm của BG và DF,AH cắt GF tại I.CM:H là trọng tâm tam giác BDC và BI // CD
Bài 1/ Cho tam giác ABC vuông tại A.Gọi E, F lần lượt là trung điểm của AB, AC. a/ Tính BC biết EF = 4cm. b/ Gọi M là điểm đối xứng của E qua F. cm tứ giác AECM là hình bình
Cho tam giác ABC có E,F,D lần lượt là trung điểm AB, BC và CA. Chứng minh: a) tứ giác BFED là hình bình hành. b) Trên tia đối của tia FD lấy điểm M sao cho FD=FM. Chứng minh tứ giác ABDM là hình bình hành. c) Chứng minh tứ giác AMCD là hình bình hành.
Cho tam giác ABC có AB<AC, M là trung điểm BC, N là trung điểm đối xứng của A qua D.
a) Chứng minh rằng tứ giác ABNC là hình bình hành
b) Kẻ AH vuông góc với BC. Gọi E, F lần lượt là trung điểm AB, AC. Chứng minh rằng ME=HF suy ra MHEF là hình thang cân.
Cho hình bình hành ABCD có E và F lần lượt là trung điểm của AB và DC. Gọi M,N lần lượt là giao điểm của AC với DE và BF.
a) CM: Tứ giác DEBF là hình bình hành
b) CM: AM=MN=NC
c) MN cắt EF tại O. CM: B đối xứng với D qua O.
Cho tam giác ABC cân tại A, đường trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng với M qua I a) Biết AB = 8cm. Tính MI b) Chứng minh tứ giác AMCK là hình chữ nhật c) Chứng minh tứ giác ABMK là hình bình hành
Bài 6 :Cho hình bình hành ABCD, gọi E,F lần lượt là trung điểm của AB và CD
a) Tứ giác DEBF là hình gì?
b)C/m: AC,BD,EF đồng quy
c) Gọi giao điểm của AC với DE và BF thứ tự là M,N, chứng minh tứ giác EMFN là hình bình hành
d) Tính SEMFN khi AC = a, BC = b, AC ⊥ BD
1 Cho tam giác ABC, gọi I, K lần lượt là trung điểm của AB và AC. E đối xứng với C qua I, F đối xứng với B qua K. Chứng minh E đối xứng với F qua A.
cho tam giác ABC có đường cao AH . Gợi E và F theo thứ tự là trung điểm của ACvà HC . gọi D là điển đối xứng của A qua F .
a, chứng minh tứ giác ACDH là hình bình hành
b, chứng minh DC vuông góc với BC
c, chứng minh AB +BC > 2BE