Cho tam giác ABC. Gọi M là trung điểm của BC. Trên tia đối của tia BA lấy điểm D sao cho BD = AB. Gọi K là giao điểm của DM và AC. Chứng minh rằng AK = 2 KC
Cho tam giác ABC có trung tuyến AM (M thuộc BC). Trên cạnh AB, AC lần lượt lấy hai điểm D, E sao cho AD = DE = EB. Gọi I là giao điểm của AM và CD. Chứng minh AI = IM.
cho tam giác ABC .D thuộc tia đối BA sao cho BD = BA . gọi M là trung điểm của BC . K là giao điểm của DM và AC . gọi I là trung điểm của AK . CM : CK= KI => AK = 2 lần KC
Cho tam giác ABC điểm D thuộc tia đối của tia BC sao cho BD = ba điểm M là trung điểm của BC Gọi K là trung điểm của BM và AC Chứng minh rằng AK = 2 KC
Chotam giác ABC (AB < AC). Gọi M, N lần lượt là trung điểm của AB và AC.a) Chứng minh MN là đường trung bình của tam giác.b) Tứgiác MNCB là hình gì? Vì sao?c) Lấy điểmI là trung điểm BC. K là giao điểm của AI và MN. Chứng minh K là trungđiểm của AI
Cho tam giác ABC. Trên BC lần lượt lấy E, F sao cho BE = EF=FC. Gọi I, J lần lượt là trung điểm của AB, AC. M là giao điểm của AE với BJ, N là giao điểm của AF với CI. Tính MN theo BC
cho tam giác ABC 3 góc nhọn, I là trung điểm BC, M,N là trung điểm AB,AC.
1. tứ giác BCNM là hình gì? vì sao?.
2.O là giao điểm MN và AI chứng minh O là trung điểm MN.
3. kẻ MH,OK, và AD vuông góc BC (H,D,K thuộc BC) chứng minh MH+OK=AD.
4.về phía ngoài tam giác ABC dựng tam giác ABP,ACQ vuông tại A chứng minh AI=1/2PQ
Cho tắm giác ABC. BD;CE là đường trung tuyến. Gọi M và N lần lượt là trung điểm của BE và DC. I,K thứ tự là giao điểm MN với BD và CE . Chứng minh a) BEDC là hình thang b) MI = 0,5 DE; MI=0,25 BC c) MI=IK=KN d) EI=ND
Bài 1: Cho tứ giác ABCD. Gọi E, F, I là trung điểm của AD, BC, AC. Chứng minh rằng:
a) EI // CD; IF // AB.
b) EF ≤ (AB+CD)/2
Bài 4: Cho tam giác ABC có đường truyến BD và CE cắt nhau tại G. Gọi I, K là trung điểm GB, GC. Chứng minh DE// IK và DE = IK.
Bài 5: Cho tam giác ABC có đường trung tuyến BD và CE. Gọi M, N là trung điểm BE, CD. Gọi MN cắt BD tại I và MN cắt CE tại I. Chứng minh MI = IK = KN