Trong mặt phẳng Oxy, cho tam giác ABC có AB = AC, \(\widehat{BAC}=90^0\), trung điểm của BC là M(1; -1) và trọng tâm tam giác ABC là \(G\left(\dfrac{2}{3};0\right)\)
a) Tìm tọa độ điểm A
b) Tìm tọa độ điểm B và C
c) Viết phương trình đường tròn ngoại tiếp tam giác ABC
Trong mặt phẳng Oxy cho tam giác ABC có \(AB=AC,\widehat{BAC}=90^0\). Biết \(M\left(1;-1\right)\) là trung điểm cạnh BC và \(G\left(\dfrac{2}{3};0\right)\) là trọng tâm tam giác ABC. Tìm tọa độ các đỉnh A, B, C ?
Một đa giác đều có góc ở mỗi đỉnh bằng \(\alpha\) và nội tiếp đường tròn bán kính R thì độ dài mỗi cạnh của nó là? (giải chi tiết)
A. \(2Rsin\alpha\) B. \(Rsin\alpha\) C. \(\dfrac{R}{sin\alpha}\) D. \(\dfrac{3R}{2sin\alpha}\)
Cho tam giác ABC có tâm đường tròn ngoại tiếp là O bán kính R và các cạnh là a, b, c. Chứng minh rằng : \(9OG^2=9R^2-4S\left(\cot A+\cot B+\cot C\right)\)
Trong mặt phẳng tọa độ Oxy, cho ba điểm \(I\left(2;4\right);B\left(1;1\right);C\left(5;5\right)\). Tìm điểm A sao cho I là tâm đường tròn nội tiếp tam giác ABC ?
Chứng minh rằng với mọi tam giác ABC, ta có :
1) \(\dfrac{r}{R}\le\dfrac{1}{2}\)
2) \(\dfrac{1}{2Rr}\le\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\le\dfrac{1}{4r^2}\)
3) \(m_a.m_b.m_c\ge\sqrt{p.S}\)
4) \(a^2\left(p-a\right)+b^2\left(p-b\right)+c^2\left(p-c\right)\ge\dfrac{3r}{2R}abc\)
Cho tam giác ABC nội tiếp trong đường tròn tâm O. Gọi G,H lần lượt là trọng tâm, trực tâm của tam giác ABC, D là điểm đối xứng với B qua O. a. Chứng minh AHCD là hình bình hành. Suy ra \(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{HO}\). b. Chứng minh: \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OH}\). Suy ra O,G,H thẳng hàng. Giúp mình với ạ
1. Cho tam giác ABC nội tiếp (O;R) và AA', BB', CC' là 3 đường trung tuyến. Kéo dài 3 trung tuyến cắt (O;R) tại A1, B1, C1.
Chứng minh: \(\dfrac{AA'}{AA_1}+\dfrac{BB'}{BB_1}+\dfrac{CC'}{CC_1}\le\dfrac{9}{4}\)
2. Cho tam giác ABC nội tiếp (O;R) và AA', BB', CC' là 3 đường cao. Kéo dài 3 đường cao cắt (O;R) tại A1, B1, C1.
Chứng minh: \(\dfrac{AA'}{AA_1}+\dfrac{BB'}{BB_1}+\dfrac{CC'}{CC_1}\ge\dfrac{9}{4}\)
3. Cho tam giác ABC với O1, O2, O3 là tâm các đường trong bàng tiếp góc A, B, C. Gọi S1, S2, S3 lần lượt là diện tích các tam giác O1BC, O2CA, O3AB.
Chứng minh: \(S_1+S_2+S_3\ge3S\)
Cho tam giác ABC nội tiếp đường tròn có bán kinh R và AB = R , AC =R√2 .Tính góc A biết nó là góc tù ?
Mọi người giúp mình với ạ mình cảm ơn