Cho tam giác ABC có AB < AC. Lấy E thuộc AC sao cho AE=AB. Trên tia đối của tia BA lấy điểm D sao cho BD=EC.
a) Chứng minh rằng tam giác ADC cân tại A.
b) Kẻ AH vuông góc với BE tại H, AH cắt DC tại K. Chứng minh AK là đường trung trực của DC.
Cho tam giác ABC có AB=AC. Tia phân giác của góc A cắt BC tại M.
a,Chứng minh tam giác AMB bằng tam giác AMC
b,Trên tia đối của MA lấy điểm D sao cho MD= MA. chứng minh AB // DC
c,Qua M vẽ ME vuông góc với AB( E thuộc AB) và MF vuông góc với AC( F thuộc AC) Chứng minh ME=MF
d, Chứng minh EM vuông góc với CD
Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC tại D. Trên tia đối của tia AB lấy điểm F sao cho BC = BF. Chứng minh:
1. Tam giác BDF bằng tam giác BDC.
2. DC > DA.
3. Cho E là 1 điểm nằm giữa A và B. Chứng minh: DE < BC
Bài 1: Cho tam giác ABC vuông tại A,vẽ BE là phân giác của ABC(E thuộc AC).Trên cạnh BC lấy điểm D sao cho BD=BA .Chứng minh rằng :
a, Tam giác ABE= Tam Giác DBE b, DE VUÔNG GÓC BC ;
c, Trên tia đối của tia AB lấy điểm F sao cho AF = DC. C/minh : F,E,D thẳng hàng.
Bài 2: Cho xOy nhọn , vẽ Ot là phân giác của xOy .Lấy I trên Ot, kẻ IAOx (AOx)
cắt Oy tại K, kẻ IBOy cắt Ox tại H.Chứng minh:
a, Tam Giác AOI= Tam Giác BOI ; b, AK=BH c,Lấy D là trung điểm HK C/m: O,I,D thẳng
Cho tam giác ABC vuông tại A. Trên BC lấy điểm E sao cho BA=BE. Tia phân giác của góc B cắt AC ở D. Trên BC lấy điểm E sao cho BA=BE
a) Chứng minh tam giác ABD= tam giác EBD
b) Chứng minh DE vuông góc với BC
c) Trên tia đối của tia AB lấy điểm M sao cho AM=EC, chứng minh MD=CD
cho tam giác ABC. trên tia đối của tia AB lấy điểm D sao cho AB=AD, trên tia đối của tia AC lấy điểm E sao cho AC=AE. một đường đi qua A cắt các cạnh BC và DE lần lượt tại M và N. chúng minh góc ADE=góc ABC; góc AED= góc ACB
Cho tam giác ABC vuông tại A, M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Đường thẳng qua B song song với AC cắt tia DC tại điểm E.
a. Chứng minh: Tam giác ABM=Tam giác CDM
b. Chứng minh: AB=CD và AC vuông góc DE
c. Chứng minh: C là trung điểm của DE
Bài 5 Cho tam giác ABC vuông tại A ( AB < AC ). Trên cạnh BC lấy điểm D sao cho AB = BD. Vẽ tia phân giác của ABC cắt AC tại E, gọi F là giao điểm của DE và AB.
1) Chứng minh: ABE = DBE.
2) Chứng minh – BE vuông góc với AD tại M
3) Gọi N là trung điểm của CF. Chứng minh – 3 điểm B, E, N thẳng hàng.