a) Xét ΔBAC có
BM là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AM}{MC}=\dfrac{AB}{BC}\)(Tính chất đường phân giác của tam giác)(1)
Xét ΔBAC có
CN là đường phân giác ứng với cạnh AB(gt)
nên \(\dfrac{AN}{NB}=\dfrac{AC}{BC}\)(Tính chất đường phân giác của tam giác)(2)
Ta có: ΔABC cân tại A(gt)
nên AB=AC(Hai cạnh bên)(3)
Từ (1), (2) và (3) suy ra \(\dfrac{AN}{NB}=\dfrac{AM}{MC}\)
Xét ΔABC có
N∈AB(gt)
M∈AC(gt)
\(\dfrac{AN}{NB}=\dfrac{AM}{MC}\)(cmt)
Do đó: NM//BC(Định lí Ta lét đảo)