a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
Cho tam giác ABC có AB=AC , M là trung điểm của BC
a) Chứng minh tam giác ABM= tam giác ACM
b) Chứng minh AM vuông góc với BC
c) Gọi I là trung điểm của AM , trên tia BI lấy điểm H sao cho BI=IH. Chứng minh AH song song với BC
d) Qua M kẻ đường thẳng song song với AC cắt đường thẳng AH tại K . Chứng minh A là trung điểm của HK
( trình bày giúp mình câu c,d thôi ạ )
Cho tam giác ABC có AB < AC, M là trung điểm của AC. Trên tia đối của MB lấy điểm D sao cho MB = MD. Gọi N là trung điểm của AB. Lấy điểm của NC lấy điểm K sao cho NC = NK. Chứng minh:
a. Tam giác AMB = tam giác CMD
b. Chứng minh: AD // BC
c. D, A, K thẳng hàng
Cho tam giác ABC Gọi M là trung điểm của AC Trên tia đối MB lấy điểm D sao cho MD = MB a chứng minh tam giác ABM bằng tam giác CD m b Chứng minh AB = CD c Gọi N là trung điểm của BC kéo dài BC cắt AC tại E Chứng minh C là trung điểm của De D trên tia đối tia CA lấy F sao cho CF = cm Gọi O là trung điểm của m chứng minh b o F thẳng hàng
Cho tam giác ABC có ba góc nhọn. (AB<AC). Gọi D là trung điểm của cạnh AC. Trên tia đối của tia DB lấy điểm M sao cho DM=DB
a) Chứng minh: Tam giác ADB=Tam giác CDM
b) Chứng minh AB//CM
c)Chứng minh AM=BC
d) Trên tia MC lấy điểm N sao cho C là trung điểm của MN.Chứng minh AC//BN
e)Gọi I,K lần lượt là trung điểm của AB và CM. Chứng minh: ba điểm K,D,I thẳng hàng
Cho tam giác ABC có AB = AC và BC < AB. M là trung điểm của BC. Tam giác ABM = tam giác ACM, AM là tia phân giác của góc BAC (đã chứng minh). Trên cạnh AB lấy điểm N sao cho CB = CD, CN là tia phân giác của góc BCD, CN vuông góc với BD (đã chứng minh). Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh: BE - CE = 2BN.
Cho tam giác ABC có: AB = AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM = MD. Chứng minh rằng:
a, tam giác ABM = TAM GIÁCDCM
b, GÓC BAM = GÓC MDC
c, AB // DC
MỌI NGƯỜI GIÚP MIK VS NHÉ
Cho tam giác ABC có AB =AC . Gọi
M là trưng điểm của BC
a) chứng minh tam giác ABM = tam giác ACM
b) trên cạnh AM lấy điểm K bất kì . Chứng minh KB =KC
c) Tia BK cắt cạnh AC tại F , tia CK cắt cạnh AB tại E . Chứng minh EF// CB
Cho tam giác ABC có AB = AC và BC < AB. M là trung điểm của BC.
a. tam giác ABM = tam giác ACM, AM là tia phân giác của góc BAC.
b. Trên cạnh AB lấy điểm N sao cho CB = CD, CN là tia phân giác của góc BCD. Chứng minh: CN vuông góc với BD.
c. Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh: BE - CE = 2BN.
Cho tam giác ABC có:AB=AC kẻ AM là tia phân giác của góc BAC.a.Chứng minh tam giác ABM=tam giác ACM.b.Trên tia đối của tia MA lấy D sao cho MA=MD,chứng minh AB=CD,AB//CD.c,Gọi I,K lần lượt là trung điểm của AB và CD,chứng minh I,M,K thẳng hàng