Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đo: ΔEBC=ΔDCB
Suy ra: \(\widehat{OCB}=\widehat{OBC}\)
=>ΔOBC cân tại O
=>OB=OC
mà AB=AC
nên AO là đường trung trực của BC
=>AO\(\perp\)BC
Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đo: ΔEBC=ΔDCB
Suy ra: \(\widehat{OCB}=\widehat{OBC}\)
=>ΔOBC cân tại O
=>OB=OC
mà AB=AC
nên AO là đường trung trực của BC
=>AO\(\perp\)BC
Cho ΔABC có AB = AC, kẻ BD ⊥ AC , CE ⊥ AB ( D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. C/m:
a) BD = CE
b) ΔOEB = ΔODC
c) AO là phân giác của góc BAC
cho tam giác abc có ab=ac. kẻ bd vuông góc với ac tại d kẻ ce vuông góc ab tại e. Gọi I là giao điểm của BD và CE. CA chứng minh rằng:
a) tam giác ABD= tam giác ACE
b) EI=DI
AI vuông góc với BC
Cho ▲ABC có AB = AC. Kẻ BD⊥AC tại D, Kẻ CE⊥AB tại E. Gọi I là giao điểm của BD và CE. Chứng minh :
a) ▲ABC = ▲AFE.
b) ▲BEI = ▲CDI.
Cho \(\Delta ABC\) có AB = AC. Kẻ BD vuông góc với AC; CE \(\perp\)AB ( \(D\in AC;E\in AB\)). Gọi O là giao điểm của BD và CE. Chứng minh:
a) BD = CE
b) \(\Delta OEB=\Delta ODC\)
c) AO là tia phân giác của \(\widehat{BAC}\)
Cho tam giác ABC có AB=AC. Vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi I là giao điểm của BD và CE. Chứng minh rằng:
a) BD = CE
b) EI = DI
c) Ba điểm A, I, H thẳng hàng ( với H là trung điểm của BC)
Cho tam giác ABC có AB=AC. Vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi I là giao điểm của BD và CE. Chứng minh rằng:
a) BD = CE
b) EI = DI
c) Ba điểm A, I, H thẳng hàng ( với H là trung điểm của BC)
Tam giác ABC có BD và CE là phân giác của \(\widehat{ABC}\) và \(\widehat{ACB}\) . Gọi BC cắt CE tại I . Từ I kẻ IK \(\perp\) AB ; IH \(\perp\) BC ; IM \(\perp\) AC . Chứng minh IK = IH = IM .
cho tam giác ABC có AB=AC. Kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC), (E thuộc AB). Gọi O là giao điểm của BD và CE. Chứng minh rằng :
a) BD=CE
b) Tanm giác OEB=ODC
c)AO là phân giác của góc BAC.
d) ED//BC