1. Cho ∆ABC biết BC = 7.5cm, AC = 4.5cm, AB = 6cm.
a) ∆ABC là tam giác gì? Tính đường cao AH của ∆ABC.
b) Tính độ dài các cạnh BH, HC.
2. Cho ∆ABC vuông tại A, AB = 12cm, AC = 16cm, phân giác AD, đường cao AH. Tính HD, HB, HC.
Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R). Các đường cao AD, BE, CF cắt nhau tại H. Các đường thẳng BE và CF cắt đường tròn (O;R) tại Q và K. Gọi I là trung điểm BC, chứng minh I thuộc đường trong ngoại tiếp tam giác DEF
đường tròn tâm (I) nội tiếp tam giác ABC , (I) cắt AB tại F cắt Bc tại D và cắt AC tại E . Ad cắt (I) tại M . AI cắt EF tại K . chứng minh \(\dfrac{IA^2}{AB\cdot AC}+\dfrac{IB^2}{BC\cdot BA}+\dfrac{IC^2}{CA\cdot CB}=1\)
Cho diểm O thuộc miền trong của tam giác ABC. Các tia AO, BO cắt các cạnh tam giác ABC lần lượt ở G, E, F. Chứng minh rằng: \(\dfrac{OA}{AG}+\dfrac{OB}{BE}+\dfrac{OC}{CF}=2\)
cho tứ giác ABCD nội tiếp đường tròn tâm O. biết phân giác trong của \(\widehat{BAD}\) và \(\widehat{ABC}\) cắt nhau tại E trên cạnh CD.
1. CM: AD+BC=CD
2. cho \(\dfrac{CD}{CB}=k\) (k>1). tính tỉ số diện tích ΔADE và ΔBCE
cho đường tròn (O;R) và dây cung BC cố định (BC<2R) . Gọi A là điểm di động trên cung lớn BC sao cho ABC là tam giác có 3 góc nhọn. Các đường cao AD,BE,CF của tam giác cắt nhau tại H . a) CM:tứ giác AEHF nội tiếp đường tròn; xác định tâm I của đường tròn đó.b)CMR:khi điểm A di động thì tiếp tuyến tại E của đường tròn tâm (I) luôn đi qua 1 điểm cố định.c)Xác định vị trí của điểm A để tam giác AEF có diện tích lớn nhất ?
Cho tam giác ABC nhọn nội tiếp (O) các đường cao AD, BE, CF cắt đường tròn thứ tự tại M,N,K. Chứng minh rằng: \(\dfrac{AM }{AD}+\dfrac{BN}{BE}+\dfrac{CK}{CF}=4\)
tam giác ABC nhọn nội tiếp (O) có 3 đường cao AD , BE , CF cắt nhau tại H và cắt (O) lần lượt tại M , N , P . Gọi K là điểm đối xứng của D qua đường thẳng AB.
a) cmr : tứ giác BFEC nội tiếp
b) cmr : DH = DM
c) cmr : E , F , K thẳng hàng
d) \(\dfrac{AM}{AD}+\dfrac{BN}{BE}+\dfrac{CP}{CF}=4\)
Cho tam giác nhọn ABC nội tiếp (O) bá,n kính R. Các đường cao AD, BE,CF cắt nhau tại H.Kẻ AD cắt cung BC tại M.
a, Chứng minh tam giác BMH cân
b, Chứng minh AE.CD.BF=AF.BD.CE=DE.EF.FD
c, Tính diện tích hình tròn ngoại tiếp tam giác HAB theo R.
d, Tìm điều kiện của tam giác ABC để biểu thức \(\dfrac{AD}{HD}+\dfrac{BE}{HE}+\dfrac{CF}{HF}\) đạt giá trị nhỏ nhất