a) Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{B}=180^0-\widehat{A}-\widehat{C}\)
\(\Leftrightarrow\widehat{B}=180^0-60^0-40^0\)
hay \(\widehat{B}=80^0\)
Vậy: \(\widehat{B}=80^0\)
b) Xét ΔAEB và ΔCED có
AE=CE(E là trung điểm của AC)
\(\widehat{AEB}=\widehat{CED}\)(hai góc đối đỉnh)
EB=ED(gt)
Do đó: ΔAEB=ΔCED(c-g-c)
c) Xét ΔAED và ΔCEB có
AE=CE(E là trung điểm của AC)
\(\widehat{AED}=\widehat{CEB}\)(hai góc đối đỉnh)
ED=EB(gt)
Do đó: ΔAED=ΔCEB(c-g-c)
\(\Rightarrow\widehat{EAD}=\widehat{ECB}\)(hai góc tương ứng)
mà \(\widehat{EAD}\) và \(\widehat{ECB}\) là hai góc ở vị trí so le trong
nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Ta có: AD//BC(cmt)
\(EH\perp BC\)(gt)
Do đó: \(EH\perp AD\)(Định lí 2 từ vuông góc tới song song)