Cho tam giác ABC (∠A = 90o) đường phân giác BD trên BC lấy điểm E sao cho BE = BA
a) Chứng minh AD=AE và BD là đường trung trực của AE
b) kẻ AH ⊥ BC . Chứng minh AE là phân giác của góc HAC
c) CHứng minh AD < CD
d) Gọi Cx là tia đối của CB . Tia phân giác của góc ACx cắt đường BD tại A tính số đo góc BAK
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE và BA=BE
=>BD là đường trung trực của AE
b: Ta có: \(\widehat{CAE}+\widehat{BAE}=90^0\)
\(\widehat{BEA}+\widehat{HAE}=90^0\)
mà \(\widehat{BAE}=\widehat{BEA}\)
nên \(\widehat{CAE}=\widehat{HAE}\)
hay AE là tia phân giác của góc HAC
c: Ta có: DA=DE
mà DE<DC
nên DA<DC