a)
Tam giác ABC có:
BAC + ABC + ACB = 1800
600 + ABC + ACB = 1800
ABC + ACB = 1800 - 600
ABC + ACB = 1200
BI là tia phân giác của ABC
=> ABI = IBC = ABC : 2
CI là tia phân giác của ACB
=> ACI = CIB = ACB : 2
Tam giác IBC có:
BIC + IBC + ICB = 1800
BIC + ABC : 2 + ACB : 2 = 1800
BIC + \(\frac{1}{2}\) . (ABC + ACB) = 1800
BIC + 1200 : 2 = 1800
BIC + 600 = 1800
BIC = 1800 - 600
BIC = 1200
b)
FI là tia phân giác của BIC
=> CIF = FIB = BIC : 2 = 1200 : 2 = 600
EIB + BIC = 1800
EIB + 1200 = 1800
EIB = 1800 - 1200
EIB = 600
mà FIB = 600 (chứng minh trên)
=> EIB = FIB
Xét tam giác EIB và tam giác FIB có:
EIB = FIB (chứng minh trên)
IB chung
IBE = IBF (IB là tia phân giác của ABC)
=> Tam giác EIB = Tam giác FIB (g.c.g)
c)
EIB = DIC (2 góc đối đỉnh)
CIF = FIB (FI là tia phân giác của BIC)
mà EIB = FIB (chứng minh trên)
=> DIC = CIF
Xét tam giác CIF và tam giác CID có:
FIC = DIC (chứng minh trên)
IC chung
ICF = ICD (IC là tia phân giác của ACB)
=> Tam giác CIF = Tam giác CID (g.c.g)
=> IF = ID (2 cạnh tương ứng)
mà IF = IE (Tam giác EIB = Tam giác FIB)
=> IF = IE = ID
d)
CF = CD (Tam giác CIF = Tam giác CID)
EB = FB (Tam giác EIB = Tam giác FIB)
=> EB + CD = FB + CF = BC