Gọi đường trung tuyến kẻ từ `A` cắt `BC` tại `M`
`=>M` là trung điểm của `BC`
`=>M(2 ; 0)`
Ta có: `\vec{AM} = ( 1 ; -1)` là vtcp của `AM`
`=>\vec{n_[AM]} = ( 1 ; 1 )`
Mà `M(2 ; 0) in AM`
`=>` Pt của đường trung tuyến kẻ từ `A` là:
`1 ( x - 2) + 1 ( y - 0)=0`
`<=> x + y - 2 = 0`