Bài 1. Cho hình thang cân ABCD (AB\\CD), A=3D. Tính các góc của hình thang cân.
Bài 2. Cho tam giác cân ABC cân tại A có BH và CK là hai đường cao của tam giác. Chứng minh BCHK là hình thang cân.
Bài 3.Cho hình thang cân ABCD (AB\\CD) có O là giao điểm hai đường chéo. Chứng minh OA = OB, OC = OD.
Bài 4.Cho tam giác ABC cân tại A. Trên cạnh AB, AC lấy điểm M, N sao cho BM = CN.
a) Chứng minh BMNC là hình thang cân.
b) Tính các góc tứ giác BMNC biết góc A=400
Bài 5. Cho hình thang cân ABCD (AB\\CD) có AB=8cm, BC=AD=5cm, CD=14cm. Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Chứng minh: CD-AB=2AK. Từ đó tính độ dài BH.
c) Tính diện tích hình thang ABCD.
Bài 6. Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên BC. Chứng minh CA là tia phân giác của góc BCD.
Bài 1. Cho hình thang cân ABCD (AB\\CD), A=3D. Tính các góc của hình thang cân.
Bài 2. Cho tam giác cân ABC cân tại A có BH và CK là hai đường cao của tam giác. Chứng minh BCHK là hình thang cân.
Bài 3.Cho hình thang cân ABCD (AB\\CD) có O là giao điểm hai đường chéo. Chứng minh OA = OB, OC = OD.
Bài 4.Cho tam giác ABC cân tại A. Trên cạnh AB, AC lấy điểm M, N sao cho BM = CN.
a) Chứng minh BMNC là hình thang cân.
b) Tính các góc tứ giác BMNC biết góc A=400
Bài 1. Cho hình thang cân ABCD (AB\\CD), A=3D. Tính các góc của hình thang cân.
Bài 2. Cho tam giác cân ABC cân tại A có BH và CK là hai đường cao của tam giác. Chứng minh BCHK là hình thang cân.
Bài 3.Cho hình thang cân ABCD (AB\\CD) có O là giao điểm hai đường chéo. Chứng minh OA = OB, OC = OD.
Bài 4.Cho tam giác ABC cân tại A. Trên cạnh AB, AC lấy điểm M, N sao cho BM = CN.
a) Chứng minh BMNC là hình thang cân.
b) Tính các góc tứ giác BMNC biết góc A=400
Bài 5. Cho hình thang cân ABCD (AB\\CD) có AB=8cm, BC=AD=5cm, CD=14cm. Kẻ các đường cao AK và BH.
a) Chứng minh rằng CH=DK.
b) Chứng minh: CD-AB=2AK. Từ đó tính độ dài BH.
c) Tính diện tích hình thang ABCD.
Bài 6. Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên BC. Chứng minh CA là tia phân giác của góc BCD.
Bài 5. Cho AABC cân tại A, vẽ 2 đường cao BE, CF.
a) Chứng minh tam giác AEF cân.
b) Chứng minh tứ giác BFEC là hình thang cân.
c) cho Â: 10° .Tính các góc của hình thang cân đó.
Cho tam giác ABC cân tại A ) < 40+ có BM, CN là hai đường phân
giác của tam giác ABC.
a) Chứng minh BCMN là hình thang cân.
b) BE, CF là hai đường cao của tam giác ABC. Chứng minh EMNF là
hình thang cân
Bài 1: Cho hình thang cân ABCD ( AB//CD) có D^=700
a) Tính số đo các góc B^,C^,A^
b) Kẻ đường cao AH và BK của hình thang. Chứng minh DH = CK
Bài 2: Cho tam giác ABC cân tại A. kẻ phân giác BE, CF của các góc B và C.
a) Chứng minh tam giác AEF cân
b) Chứng minh △BFC = △CEB
c) Chứng minh BFEC là hình thang cân
Cho tam giác abc (ab bé hơn ac), đường cao ah. m, n, p lần lượt là trung điểm của ab, ac, bc. chứng minh tứ giác mnph là hình thang cân
Cho tam giác ABC cân tại A, các đường phân giác BD, CE (D thuộc AC, E thuộc AB). Chứng minh BEDC là hình thang cân; Tính các góc của hình thang cân BEDC, biết góc = 50 độ
Cho tam giác DEF cân tại D, các đường cao EN, FM cắt nhau tại H. a) Chứng minh hình thang EMNF là hình thang cân b) Chứng minh tam giác DMH = tam giác DNH c) Chứng minh DH vuông góc với MN