a: Xét ΔADB và ΔADC có
\(\widehat{B}=\widehat{C}\)
\(\widehat{BAD}=\widehat{CAD}\)
Do đó: ΔADB\(\sim\)ΔADC
b: Ta có: BC=8cm
=>BD=CD=4cm
=>\(DB=DC=\sqrt{6^2-4^2}=2\sqrt{5}\left(cm\right)\)
a: Xét ΔADB và ΔADC có
\(\widehat{B}=\widehat{C}\)
\(\widehat{BAD}=\widehat{CAD}\)
Do đó: ΔADB\(\sim\)ΔADC
b: Ta có: BC=8cm
=>BD=CD=4cm
=>\(DB=DC=\sqrt{6^2-4^2}=2\sqrt{5}\left(cm\right)\)
cho tam giác ABC vuông tại A có AB=6cm ,AC=8cm. đường cao AH và phân giác BDcắt nhau tại I (H trên BC và D trên AC)
a)tính độ dài AD,DC
b)Chướng minh tam giác ABC đồng dạng tam giác HBA và AB2=BH.BC
c)chứng minh tam giác ABI đồng dang với tam giác CBD
Cho tam giác ABC vuông tại A, AB=6cm,AC=8cm, đường cao AH (H thuộc BC)
a) Tính BC
b) Chứng minh rằng tam giác AHB đồng dạng tam giác CHA
c) Gọi BD là đường phân giác của góc B ( D thuộc AC). Tính DA,DC
Giải giúp em gấp ạ! Cảm ơn
Cho tam giác ABC cân tại A ( A<90 độ), O thuộc BC. Trên cạnh AB, AC lấy M và N sao cho MON=ABC. Chứng minh tam giác BMO đồng dạng với tam dạng CON
Bài 1: Cho tam giác ABC⊥A có AB=6cm, AC=8cm. kẻ đường cao AH (H∈BC).
a) CMR: △ABC∼△HBA
b) Tính độ dài các cạnh BC, AH
c) Phân giác của góc ACB cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của hai tam giác ACD và HCE
Cho hình thang ABCD vuông tại A đáy nhỏ AB.Đường chéo DB vuông góc với cạnh bên BC tại B.Chứng minh
a) ADB=BCD
b)Tam giác ADB và tam giác BCD đồng dạng
c) (
Cho tam giác ABC vuông tại C (AC<BC). Vẽ tia phân giác Ax của BAC cắt cạnh BC tại I. Vẽ BH vuông góc tại Ax tại H.
a) Chứng minh tam giác AIC đồng dạng tam giác ABH
b) Chứng minh HB 2 = HI.HA
c) Kẻ đường cao CK của tam giác ABC> Kẻ KD là đường phân giác của tam giác CKA. Chứng minh \(\dfrac{CD}{DA}=\dfrac{CB}{CA}\)
Xin hãy giúp mình với ạ! Mình xin cám ơn!
Cho hình thoi ABCD có góc A bằng 600. Qua C kẻ đường thẳng d không cắt hình thoi nhưng cắt
đường thẳng AB tại E và đường thẳng AD tại F.
a)Chứng minh : tam giác BEC đồng dạng tam giác AEF
b)Chứng minh : tam giác DCF đồng dạng tam giác AEF
c)Chứng minh : BE.DF = DB2.
d) Chứng minh : tam giác BDE đồng dạng tam giác DBF
Cho tam giác ABC vuông tại A,AB=8cm,AC=6cm.AD là tia phân giác của góc A(D thuộc BC)
a)Tính DB,DC.
b)Kẻ đường cao AH(H thuộc BC).Chứng minh rằng:tam giác AHB đồng dạng tam giác CHA.
c)Tính diện tích tam giác AHB và tam giác AHC.
Cho tam giác ABC vuông góc tại A, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB, AC. a, Chứng minh AH = MN b, Chứng minh tam giác AHM đồng dạng với tam giác AHB rồi suy ra AH^2 = AM . AB c, Chứng minh tam giác AMN đồng dạng với tam giác ACB d, Cho AB = 6cm, AC = 8cm. Tính diện tích của tam giác AMN.