1/ Cho tam giác ABC cân tại A. Trên tia đối của tia BC và CB lấy theo hai thứ tự điểm Q và R sao cho BQ= CR
a/ chứng minh AQ = Ả
b/ gọi H là trung điểm của BC. Chứng minh : góc QAR = góc RAH.
P/s: giúp mình đi. Mình đang cần gấp.
Cho tam giác ABC cân tại A.Trên tia đối của tia BC và CB lấy 2 điểm Q và R sao cho BQ=CR
a,Chứng minh:AQ=AR
b,Gọi H là trung điểm của BC.Chứng minh:∠QAH=∠RAH
Cho ΔABC cân tại A.Trên tia đối của tia BC và CB lấy điểm Q và R sao cho BQ = CR
a) CM : AQ = AR
b) Gọi H là trung điêmt của BC.CM : góc QAH = góc RAH
cho tam giác ABC cân tại A.trên tia đối của các tia BC vad CB lấy thứ tự hai điểm D và E sao cho BD=CE
a) chứng minh tam giác ADE cân
b) gọi M là trung điểm của BC. chứng minh AM là tia phân giác của ADE
c)từ B và C kẻ BH,CK theo thứ tự vuông góc với AD và AE (H thuộc AD,K thuộc AE).chứng minh BH=CK
d) chứng minh ba đường thẳng AM,BH,CK gặp nhau tại một điểm
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM = CN
a) Chứng minh rằng tam giác AMN là tam giác cân
b) Kẻ \(BH\perp AM\left(H\in AM\right)\), kẻ \(CK\perp AN\left(K\in AN\right)\). Chứng minh rằng BH = CK
c) Chứng minh rằng AH = AK
d) Khi \(\widehat{BAC}=60^0\) và BM = CN = BC, hãy tính số đo các góc của tam giác AMN và xác định dạng của tam giác OBC ?
cho tam giác ABC, trên tia đối tia AB lấy điểm M sao cho AB=AM. Trên tia AC lấy điểm N sao cho AC=AN. Chứng minh:
a) tam giác ABC=tam giác AMN
b) chứng minh BC//MN
c) gọi P và Q lần lượt là trung điểm của BC và MN. Chứng minh A là trung điểm của PQ
Bài 6: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.
a) Chứng minh ΔAMN là tam giác cân.
b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.
c) Gọi O là giao điểm của BH và CK. Chứng minh ΔOBC cân.
d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.