a) Vì AB = AC (do \(\Delta ABC\) cân tại A)
BD = CE (gt)
=> AD = AE
Xét hai tam giác ABE và ACD có:
AB = AC (do \(\Delta ABC\) cân tại A)
\(\widehat{A}\): góc chung
AD = AE (cmt)
Vậy: \(\Delta ABE=\Delta ACD\left(c-g-c\right)\)
Suy ra: BE = CD (hai cạnh tương ứng) (1)
\(\widehat{ABE}=\widehat{ACD}\) (hai góc tương ứng) (2)
\(\Delta ABC\) cân tại A nên \(\widehat{B_1}=\widehat{C_1}\) (3)
Từ (2) và (3) suy ra:
\(\widehat{ABE}-\widehat{B_1}=\widehat{ACD}-\widehat{C_1}\) hay \(\widehat{B_2}=\widehat{C_2}\)
Vậy \(\Delta BIC\) cân tại I, suy ra: IB = IC (4)
Từ (1) và (4) suy ra:
BE - IB = CD - IC hay IE = ID
b) Các tam giác cân ABC và ADE có chung góc ở đỉnh A nên \(\widehat{B_1}=\widehat{ADE}\) (hai góc đồng vị)
Do đó: BC // DE
c) Xét hai tam giác BIM và CIM có:
MB = MC (gt)
\(\widehat{B_2}=\widehat{C_2}\)(cmt)
IB = IC (do \(\Delta BIC\) cân tại I)
Vậy: \(\Delta BIM=\Delta CIM\left(c-g-c\right)\)
Suy ra: \(\widehat{IMB}=\widehat{IMC}\) (hai góc tương ứng)
Mà \(\widehat{IMB}+\widehat{IMC}=180^o\) (kề bù)
Nên \(\widehat{IMB}=\widehat{IMC}\) = 90o (1)
Ta lại có: \(\widehat{IMB}+\widehat{AMB}=180^o\) (kề bù)
Mà \(\widehat{IMB}=90^o\)
\(\Rightarrow\widehat{AMB}=90^o\) (2)
Từ (1) và (2) suy ra: ba điểm A, M, I thẳng hàng (đpcm).
BCDEM1221
a) Vì AB = AC (do ΔABCΔABC cân tại A)
BD = CE (gt)
=> AD = AE
Xét hai tam giác ABE và ACD có:
AB = AC (do ΔABCΔABC cân tại A)
AˆA^: góc chung
AD = AE (cmt)
Vậy: ΔABE=ΔACD(c−g−c)ΔABE=ΔACD(c−g−c)
Suy ra: BE = CD (hai cạnh tương ứng) (1)
ABEˆ=ACDˆABE^=ACD^ (hai góc tương ứng) (2)
ΔABCΔABC cân tại A nên B1ˆ=C1ˆB1^=C1^ (3)
Từ (2) và (3) suy ra:
ABEˆ−B1ˆ=ACDˆ−C1ˆABE^−B1^=ACD^−C1^ hay B2ˆ=C2ˆB2^=C2^
Vậy ΔBICΔBIC cân tại I, suy ra: IB = IC (4)
Từ (1) và (4) suy ra:
BE - IB = CD - IC hay IE = ID
b) Các tam giác cân ABC và ADE có chung góc ở đỉnh A nên B1ˆ=ADEˆB1^=ADE^ (hai góc đồng vị)
Do đó: BC // DE
c) Xét hai tam giác BIM và CIM có:
MB = MC (gt)
B2ˆ=C2ˆB2^=C2^(cmt)
IB = IC (do ΔBICΔBIC cân tại I)
Vậy: ΔBIM=ΔCIM(c−g−c)ΔBIM=ΔCIM(c−g−c)
Suy ra: IMBˆ=IMCˆIMB^=IMC^ (hai góc tương ứng)
Mà IMBˆ+IMCˆ=180oIMB^+IMC^=180o (kề bù)
Nên IMBˆ=IMCˆIMB^=IMC^ = 90o (1)
Ta lại có: IMBˆ+AMBˆ=180oIMB^+AMB^=180o (kề bù)
Mà IMBˆ=90oIMB^=90o
⇒AMBˆ=90o⇒AMB^=90o (2)
Từ (1) và (2) suy ra: ba điểm A, M, I thẳng hàng (đpcm