Cho tam giác ABC cân tại A. Gọi M là điểm đối xứng với A qua BC, H là giao điểm của AM và BC.
a) CM: tứ giác ABMC là hình thoi.
b) Gọi K là trung điểm của AC. Lấy điểm I đối xứng với H qua K. Chứng minh tứ giác AICH là hình chữ nhật.
c) Gọi D là trung điểm của AB. Chứng minh: 3 đường thẳng AH, BI, DK đồng qui.
a: M đối xứng A qua BC
nên BC là trung trực của AM
=>BA=BM; CA=CM
mà BA=CA
nên BA=BM=CA=CM
=>ABMC là hình thoi
b: Xét tứ giác AHCI có
K là trung điểm chung của AC và HI
góc AHC=90 độ
Do đó: AHCI là hình chữ nhật
c: Xét ΔBAC có CH/CB=CK/CA
nen HK//AB và HK=AB/2
=>HK//AD và HK=AD
=>ADHK là hình bình hành
=>AH cắt DK tại trung điểm của mỗi đường(1)
Xét tứ giác AIHB có
AI//HB
AI=HB
Do đó: AIHB là hình bình hành
=>AH cắt IB tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra AH,IB,DK đồng quy