Cho tam giác ABC cân tại A (góc A nhọn, AB >BC). Gọi M là trung điểm của BC.
a) Chứng minh: AMB = AMC
b) Gọi I là trung điểm của AB. Qua A kẻ đường thẳng song song với BC, cắt tia MI tại D. Chứng mminh: AD = MC
c) CD lần lượt cắt AB, AM tại S và E. Chứng minh BC <3AS
Bạn nào biết thì giúp mình làm bài này nhé, mình sẽ tick cho bạn, mình cảm ơn nhiều
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng
Cho tam giác ABC vuông tại A. Kẻ phân giác BE của góc ABC (E AC). Trên BC lấy điểm D sao cho AB = BD. a)Chứng minh ΔABE = ΔDBE ; BC ⏊ ED b)Kéo dài DE cắt đường thẳng AB tại M. Chứng minh BM = BC c)Gọi N là trung điểm của MC. Chứng minh ba điểm B; E; N thẳng hàng.
Cho ∆ABC cân tại A (góc A > 900 ). Từ B kẻ đường thẳng vuông góc với AC tại điểm E, Từ C kẻ đường thẳng vuông góc với AB tại điểm D.Gọi giao điểm của BE và CD là O
a) Chứng minh ∆𝐵𝐶𝐸 = ∆𝐶𝐵𝐷.
b) Gọi I là trung điểm của BC. Chứng minh ∆𝐼𝐸𝐷 là tam giác cân.
c) Chứng minh OI vuông góc với E D.
d) Trên tia CE lấy điểm F sao cho E là trung điểm của CF. So sánh: DBC và EFB
cho tam giác ABC có AB = AC , gọi I là trung điểm của BC a. chứng minh tam giác ABI= tam giác ACI
b.kẻ đường thẳng qua I và vuông góc với AB tại D.Trên tia đối của tia ID lấy điểm E sao cho ID = IE .Chứng minh AB song song CE
c.kẻ EK vuông góc với BC tại K ,cắt mạnh AC tại H .Chứng minh HD vuông góc với AI
Câu 3 : Cho tam giác ABC vuông tại A, kẻ tia phân giác của góc BC cắt AC tại I. Kẻ IM vuông góc với BC tại M, gọi N là giao điểm của BA và MI .
a) Chứng minh tam giác ABI=MBI
b) So sánh AI và IC.
c) Gọi K là trung điểm của FC. Chứng minh ba điểm B; I; K thẳng hàng.
Cho ∆𝑨𝑩𝑪 cân tại A, đường cao AH (H ∈ BC).
a) Chứng minh ∆𝐴𝐻𝐵 = ∆𝐴𝐻𝐶.
b) Từ H kẻ đường thẳng song song với AC, cắt AB tại D. Chứng minh AD = DH.
c) Gọi E là trung điểm của AC, CD cắt AH tại G. Chứng minh B, G, E thẳng hàng.
d) Chứng minh chu vi ∆𝐴𝐵𝐶 > 𝐴𝐻 + 3.𝐵G
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt cạnh BC tại D.
a) Chứng minh ΔABD = ΔACD.
b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng tâm của tam giác ABC.
c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh ΔDEC cân.
Chứng minh ba điểm B, G, E thẳng hàng và AD > BD
cho tam giác abc cân tại a ab ac 25cm bc=30cm. gọi h là trung điểm của bc.
a, chứng minh ah vuông góc vs bc.
b. tính AH
c, lấy điểm D trên BC và điểm E trên AC sao cho AD = AE. tính tam giác ODB = tam giác OEC.
MN GIÚP MIK VỚI CẦN GẤP.