Tam giác đồng dạng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vo Quang Huy

Cho tam giác ABC cân tại A đường trung tuyến BM.TRên cạnh BC lấy điểm D sao cho BD=2BC.C/M BM vuông góc với AD

Khôi Bùi
17 tháng 2 2019 lúc 12:04

Cho tam giác ABC vuông cân tại A, trung tuyến BM. Trên cạnh BC lấy D sao cho BD=2DC . Chứng minh BM vuông góc với AD.png

Gọi E là giao điểm của AD và đường thẳng đi qua C , vuông góc với CA

Do AB // CE ( GT ) \(\Rightarrow\dfrac{AB}{CE}=\dfrac{BD}{DC}=2\) ( Định lý Ta - lét )

Vì tam giác ABC cân tại A \(\Rightarrow AB=AC\)

\(AC=2AM\) ( do BM là trung tuyến \(\Rightarrow AM=MC=\dfrac{1}{2}AC\))

\(\Rightarrow AB=2AM\)

\(\Rightarrow\dfrac{2AM}{CE}=2\Rightarrow\dfrac{AM}{CE}=1\Rightarrow AM=CE\)

Xét tam giác BAM và tam giác ACE có :

\(\left\{{}\begin{matrix}AB=AC\left(GT\right)\\\widehat{BAM}=\widehat{ACE}\left(=90^o\right)\\AM=CE\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\) tam giác BAM = tam giác ACE ( c . g . c )

\(\Rightarrow\) góc AMB = góc AEC ( 2 góc t/ứng )

Mà góc AEC + góc CAE = 90 độ

=> góc AMB + góc CAE = 90 độ

=> BM vuông góc với AD ( đpcm )

Nguyễn Thành Trương
17 tháng 2 2019 lúc 12:55

Kẻ đường thẳng qua C vuông góc AC cắt AD tại E
Ta có $\frac{AB}{CE} =\frac{BD}{CD} =2$ (1)
Mà AB =AC = 2 .AM (2)
Từ (1) và (2) =>$\frac{AM}{CE} =1$ =>AM =CE
=>$\triangle BAM =\triangle ACE$ (c, g, c)
=>$\widehat{ABM} =\widehat{CAE}$
Mà $\widehat{ABM} +\widehat{AMB} =90^\circ$
=>$\widehat{CAE} +\widehat{AMB} =90^\circ$
=>BM vuông góc AD(đpcm)


Các câu hỏi tương tự
Frienke De Jong
Xem chi tiết
Gojo Satoru
Xem chi tiết
Nguyễn Thùy Linh
Xem chi tiết
khoa
Xem chi tiết
Lân Vũ Đỗ
Xem chi tiết
vũ đăng khánh
Xem chi tiết
vũ đăng khánh
Xem chi tiết
Cindy Phương
Xem chi tiết
Đạt Nguyễn tiến
Xem chi tiết