Cho tam giác ABC, góc A = 90 độ, AH vuông góc với BC tại H. Gọi P là trung điểm BH, G là trung điểm AH. Chứng minh:
a, Tam giác ABC\(\sim\)tam giác HPQ.
b, Tam giác ABP\(\sim\)tam giác CAQ.
c, Q là trực tâm tam giác APC.
Cho tam giác ABC vuông ở A đường cao AH
a) tam giác AHB đồng dạng tam giác CAB
b)phân giác BD cắt AH tại E (D thuộc AC)
c)chứng minh rằng EA/EH = DC/DC
d) Giả sử tam giác ABC vuông cân tại A lấy M là trung điểm của AC đường thẳng qua A vuông góc với BM cắt BC ở F .chứng minh BF=2FC
Cho tam giác ABC, đường trung tuyến AM, tia phân giác của góc AMB cắt AB ở D, tia phân giác của góc AMC cắt AC ở E.
a, CMR: DE//DC.
b, Gọi G là giao điểm của AM và DE. CMR: G là trung điểm của DE. Tìm điều kiện của tam giác ABC để G là trung điểm của AM
d, Gọi AN là p/g của góc BAC(N ∈BC). Bt AB=12, AC=16,BC=20. Tính diện tích ΔAMN
Cho tam giác ABC nhọn có H là trực tâm Gọi D E lần lượt là giao điểm của BH với AC ,CH với AB Chứng minh rằng tam giác AEC và ADB là hai tam giác đồng dạng Cho tam giác ABC nhọn có H là trực tâm Gọi D E lần lượt là giao điểm của BH với AC ,CH với AB Chứng minh rằng tam giác AEC và ADB là hai tam giác đồng dạng
Cho tam giác ABC cân tại A. M là trung điểm BC. Các điểm D, E lần lượt thuộc các cạnh AB, AC sao cho góc CME = góc BDM. Chứng minh:
a, \(BD.CE=BM^2\).
b, Tam giác MDE\(\approx\)tam giác BDM.
c, DM là phân giác góc BDE.
[ giúp mình nha ]
Cho tam giác ABC vuông tại A , AH là đường cao . D,E là hình chiếu vuông góc của H trên AB , AC .
a, Chứng mình : Tam giác ABH đồng dạng CAH
b, Chứng minh : AD.AB=AE.AC-AH
c, Chứng minh : Đường trung tuyến CM của tam giác ABC đi qua trung điểm của HE
Qua trọng tâm G của tam giác ABC, kẻ đường thẳng song song với AC cắt AB và BC lần lượt ở D và E. Tính độ dài đoạn DE, biết AD + EC = 16cm, chu vi tam giác ABC=75cm.
Cho G là trọng tâm của tam giác ABC. Qua G vẽ đường thẳng song song với AB cắt BC tại D. Chứng minh rằng BD=\(\dfrac{1}{3}\)BC.