Chương III : Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Không

Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt cạnh BC tại D.

a)    Chứng minh ΔABD = ΔACD.

b)    Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng tâm của tam giác ABC.

c)    Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh ΔDEC cân.

Chứng minh ba điểm B, G, E thẳng hàng và AD > BD

Nguyễn Lê Phước Thịnh
26 tháng 6 2021 lúc 19:54

a) Xét ΔABD và ΔACD có 

AB=AC(ΔBAC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

AD chung

Do đó: ΔABD=ΔACD(c-g-c)

Nguyễn Lê Phước Thịnh
26 tháng 6 2021 lúc 19:57

b) Ta có: ΔABD=ΔACD(cmt)

nên DB=DC(hai cạnh tương ứng)

mà B,D,C thẳng hàng(gt)

nên D là trung điểm của BC

Xét ΔABC có

AD là đường trung tuyến ứng với cạnh BC(cmt)

CF là đường trung tuyến ứng với cạnh AB(gt)

AD cắt CF tại G(gt)

Do đó: G là trọng tâm của ΔABC(Tính chất ba đường trung tuyến của tam giác)

Nguyễn Lê Phước Thịnh
26 tháng 6 2021 lúc 19:58

c) Xét ΔADC có 

H là trung điểm của DC

HE//AD(cùng vuông góc với DC)

Do đó: E là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

Ta có: ΔADC vuông tại D(gt)

mà DE là đường trung tuyến ứng với cạnh AC(cmt)

nên DE=CE

hay ΔDEC cân tại E


Các câu hỏi tương tự
Nguyễn Lê Phước Thịnh
Xem chi tiết
Võ Đặng Quang Minh
Xem chi tiết
Đạt Bênh
Xem chi tiết
Lê Nguyễn Minh Tú
Xem chi tiết
Huy Dz
Xem chi tiết
Regina _K
Xem chi tiết
Lê Hoàng Anh
Xem chi tiết
luu minh chau
Xem chi tiết
Thanh Do
Xem chi tiết