Cho tam giác abc cân tại A có Góc a = 100 độ, lấy điểm m thuộc cạnh AB , điểm n thuộc cạnh AC sao cho AM=AN. Chứng minh MN//BC
Bài 5: Cho tam giác ABC cân tại A. Trên cạnh AC lấy điểm M, trên cạnh AB lấy điểm N sao cho AM = AN.
a) Chứng minh ABM=ACN
b) Gọi I là giao điểm của BM và CN. Chứng minh △ IBC cân.
cho tam giác ABC có cạnh AB<AC, lấy M làm trung điểm BC, trên tia đối MA lấy E sao cho ME=MA
a) chứng minh tam giác ABM= tam giác CEM
b) chứng minh AB song song EC
c) vẽ AH vuông góc BC tại H và EK vuông góc với BC tại K. Chứng minh M là trung điểm HK
Cho tam giác ABC có góc A = 90 độ. Kẻ AH vuông góc với BC (H thuộc BC)
a) Chứng minh góc BAH = góc ACB.
b) Tia phân giác góc BAH và tia phân giác góc ACB cắt nhau tại I. Tính góc AIC
c) Cho AC > AB Trên cạnh AC lấy điểm M sao cho CM= AB. So sánh CM và BH.
Bài 1. Cho tam giác ABC cân tại A có BAC = 45o. Từ trung điểm I của cạnh AC kẻ đường vuông góc với AC cắt đường thẳng BC tại M. Trên tia đối của tia AM lấy điểm N sao cho AN = BM. Chứng minh:
a) Chứng minh: ΔMAC cân.
b) Chứng minh: AMC = BAC = 45o
c) Chứng minh: ΔABM = ΔCAN.
d) Chứng minh: ΔMCN vuông cân
Bài 2. Cho ΔABC có góc A nhọn. Kẻ tia Ax ⊥ AB (tia AC nằm giữa Ax và AB ). Kẻ tia Ay ⊥ AC (tia AB nằm giữa Ay và AC). Lấy điểm E và F lần lượt thuộc tia Ax và Ay sao cho AE = AB và
a) Chứng minh: BF = CE.
b) Gọi M và N lần lượt là trung điểm của BF và CE. Chứng minh: ΔAMN vuông cân.
Bài 3. Trên cạnh BC của ΔABC lấy 2 điểm E và F sao cho BE = CF. Qua E và F vẽ các đường thẳng song song với BA chúng cắt cạnh AC tại G và H. Qua E vẽ đường thẳng song song với AC cắt AB tại D.
a) Chứng minh: AD = GE.
b) Chứng minh: ΔBDE = ΔFHC.
c) Chứng minh: AB = GE + FH.
Bài 4. Cho tam giác ABC vuông tại A và AB = 2AC. Gọi E là trung điểm của AB. Trên tia đối của tia AC lấy điểm D sao cho AB = AD. Chứng minh rằng:
a) BC = DE.
b) BC ⊥ DE.
Bài 5. Cho ΔABC vuông cân tại A, M là trung điểm cạnh BC, E là điểm nằm giữa M và C. Vẽ BH ⊥ AE tại H và CK ⊥ AE tại K. CMR:
a) AM ⊥ BC
b) BH = AK
c) ΔMBH = ΔMAK
d) ΔMHK vuông cân.
Cho tam giác ABC vuông tại A có AB = 6cm BC = 10cm a) tính độ dài cạnh AC b) gọi M là trung điểm của BC . Vẽ MD vuông góc với AC tại D. Trên tia đối MD lấy điểm E sao cho ME=MB . Chứng munh tam giác CMD= BME c) chứng minh AC // BE d) gọi M là trung điểm của AM và BD . Chứng minh G là trọng tâm tam giác ABC
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt cạnh AC tại E, trên cạnh BC lấy điểm F sao cho BF = BA. a) Chứng minh tam giác ABE = tam giác FBE. b) EF vuông góc với BC c)trên tia đối cua tia EF lấy M sao cho EM=EC. chứng minh B;A;M thẳng hàng
Bài 4 (3 điểm): Cho tam giác ABM vuông tại A (AB < AM). Trên cạnh BM lấy điểm E sao cho BE = BA. Kẻ BD là tia phân giác của góc ABM (D thuộc AM) a) Chứng minh AABD = AEBD b) Cho AB = 3cm, AM = 4cm. Tinh độ dài cạnh BM. c) Qua E kẻ đường thẳng song song với AM cắt BD tại H. Chứng minh HD là tia phân giác của góc AHE. d) Kẻ HI 1 BM tại I. Chứng minh rằng 3 điểm A, H, I thẳng hàng