cho tam giác ABC, các đường trung tuyến BD, CE cắt nhau tại O. Gọi M là điểm bất kỳ trên cạnh BC. Vẽ MG song song với BD ( G thuộc AC), vẽ MH song song với CE (E thuộc AB). Chứng minh rằng:
a) HI=IF=FG
b) OM đi qua trung diểm của HG
Cho tam giác ABC có ba góc nhọn (AB < AC), vẽ ba đường cao BD, CE, AF. Chứng minh đường thẳng qua trung điểm O của BC và song song với AH đi qua trung điểm I của DE.
c) Đường thẳng qua E và song song với BD cắt AD tại I
Đường thẳng qua F và song song với BD cắt BC tại K.
Chứng minh: Các đường thẳng AC, EF và IK cũng đi qua trung điểm O của BD
d) Biết góc AOD = 60o và AD=1cm. Tính OA, OD và diện tích ABCD
Cho tam giác ABC nhọn có BD và CE là các đường cao. Gọi G, H lần lượt là hình chiếu của B, C trên đường thẳng ED. Đường thẳng qua E vuông góc với AC cắt CH tại F.
a) Chứng minh: BE=DF
b)Gọi I là giao điểm của DE và BF. Chứng minh I là trung điểm của GH.
C) DF cắt EC tại M. Đường thẳng qua E song song với AC cắt BD tại N. Chứng minh MN song song với BC.
Cho tam giác ABC . Lấy các điểm D ; E theo thứ tự thuộc các tia đối của các tia BA ; CA sao cho BD=CE=BC . Gọi O là giao điểm của BE và CD . Qua O vẽ đường thẳng song song với tia phân giác của góc A , đường thẳng này cắt AC ở K . CMR : AB = CK
Cho hình vuông ABCD cạnh a . Gọi O là giao điểm hai đường chéo AC và BD . Lấy điểm M bất kì trên cạnh AB ( M khác A,B) . Qua A kẻ đường thẳng vuông góc với CM tại H và cắt BC tại K
1.Chứng minh \(KH.KA=KB.KC\) và KM song song với BD
2.Gọi N là trung điểm của BC . Trên tia đối của tia NO lấy điểm E sao cho \(\dfrac{ON}{OE}=\dfrac{\sqrt{2}}{2}\) .Gọi F là giao điểm của DE và OC . Tính \(\dfrac{FO}{FC}\)
3.Gọi P là giao điểm của MC và BD , Q là giao điểm của MD và AC . Đặt AM=x , 0<x<a . Tính diện tích tứ giác CPQD theo x và a . Tìm vị trị của M để diện tích tứ giác CPQD đạt giá trị nhỏ nhất
Cho tam giác ABC. Gọi I là một điểm di chuyển trên cạnh BC. Qua I kẻ đường thẳng song song với cạnh AC cắt cạnh AB tại M. Qua I kẻ đường thẳng song song với cạnh AB cắt AC tại N.
a, Gọi O là trung điểm của AI. Chứng minh rằng ba điểm M, O, N thẳng hàng.
b, Kẻ MH, NK, AD vuông góc với BC lần lượt tại H, K, D. Chứng minh rằng MH+NK+AD.
c, Tìm vị trí của điểm I để MN song song với BC.
Cho tam giác ABC có 3 góc nhọn, lấy điểm M là trung điểm BC. Qua điểm D thuộc đoạn BM, vẽ đường thẳng song song với AM, đường thẳng này cắt 2 đường thẳng AB, AC lần lượt tại E và F. Qua A vẽ đường thẳng song song với BC và cắt EF tại K
1, Chứng minh \(\widehat{AKE}=\widehat{ACB}+\widehat{MAC}\)
2, Tính giá trị của DE + DF - 2AM
3, Chứng minh K là trung điểm của đoạn EF
1.Cho hình thang ABCD (AB // CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh AD, BC theo thứ tự tại E và F . Chứng minh rằng OE = OF 2.a) Cho tam giác ABC với đường trung tuyến AM và đường phân giác trong AD. Tính diện tích tam giác ADM, biết AB = m, AC = n (n > m) và diện tích tam giác ABC là S. b) Khi cho n = 7cm, m = 3cm, hỏi rằng diện tích tam giác ADM chiếm bao nhiêu phần trăm diện tích tam giác ABC?