Ôn tập Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho tam giác ABC, các đường phân giác của các góc ngoài tại B và C cắt nhau ở E. Gọi G, H, K theo thứ tự là chân các đường vuông góc kẻ từ E đến các đường thẳng BC, Ab, AC

a) Có nhận xét gì về các độ dài EH, EG, EK 

b) Chứng minh AE là tia phân giác của góc BAC

c) Đường phân giác của góc ngoài tại A của tam giác ABC cắt các đường thẳng BE, CE tại D, F. Chứng minh rằng EA vuông góc với DF

d) Các đường thẳng AE, BF, CD là các đường gì trong tam giác ABC ?

e) Các đường thẳng EA, FB, DC là các đường gì trong tam giác DEF ?

Tuyết Nhi Melody
29 tháng 7 2017 lúc 21:03

a) E thuộc tia phân giác của CBH^

EG = EH (tính chất tia phân giác) (1)

E thuộc tia phân giác của BCK^

EG = EK (tính chất tia phân giác) (2)

Từ (1) và (2) suy ra: EH = EG = EK

b) EH = EK

E thuộc tia phân giác của BAC^ mà E # A

Vậy AE là tia phân giác của BAC^

c) AE là tia phân giác góc trong tại đỉnh A.

AF là tia phân giác góc ngoài tại đỉnh A.

AE⊥AF (tính chất hai góc kề bù)

Hay AE⊥DF

d) Chứng minh tương tự câu a ta có BF là tia phân giác của ABC^

CD là tia phân giác của ACB^

Vậy các đường AE, BF, CD là các đường phân giác của ∆ABC

e) BF là phân giác góc trong tại đỉnh B.

BE là phân giác góc ngoài tại đỉnh B.

⇒BF⊥BE (tính chất hai góc kề bù)

Hay BF⊥ED

CD là đường phân giác góc trong tại C

CE là đường phân giác góc ngoài tại C

⇒CD⊥CE (tính chất hai góc kề bù)

Hay

Bùi Nguyễn Việt Anh
24 tháng 2 2018 lúc 22:30

a) E thuộc tia phân giác của ˆCBHCBHˆ

⇒⇒ EG = EH (tính chất tia phân giác) (1)

E thuộc tia phân giác của ˆBCKBCKˆ

⇒⇒ EG = EK (tính chất tia phân giác) (2)

Từ (1) và (2) suy ra: EH = EG = EK

b) EH = EK

⇒⇒ E thuộc tia phân giác của ˆBACBACˆ mà E # A

Vậy AE là tia phân giác của ˆBACBACˆ

c) AE là tia phân giác góc trong tại đỉnh A.

AF là tia phân giác góc ngoài tại đỉnh A.

⇒⇒ AE⊥AFAE⊥AF (tính chất hai góc kề bù)

Hay AE⊥DFAE⊥DF

d) Chứng minh tương tự câu a ta có BF là tia phân giác của ˆABCABCˆ

CD là tia phân giác của ˆACBACBˆ

Vậy các đường AE, BF, CD là các đường phân giác của ∆ABC

e) BF là phân giác góc trong tại đỉnh B.

BE là phân giác góc ngoài tại đỉnh B.

⇒BF⊥BE⇒BF⊥BE (tính chất hai góc kề bù)

Hay BF⊥EDBF⊥ED

CD là đường phân giác góc trong tại C

CE là đường phân giác góc ngoài tại C

⇒CD⊥CE⇒CD⊥CE (tính chất hai góc kề bù)

Hay CD⊥EF


Các câu hỏi tương tự
Shinichi Kudo
Xem chi tiết
Nguyễn Dương Anh Na
Xem chi tiết
Nguyễn Trần Gia Linh
Xem chi tiết
Tuyet Tran Kim
Xem chi tiết
hieu nguyen ngoc trung
Xem chi tiết
Tâm Thanh
Xem chi tiết
Quỳnh Như Trần
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Tùng Nguyễn
Xem chi tiết