Cho \(\Delta ABC\) có 3 góc nhọn; đường cao AH, BE, CF cắt nhau ở H.
a) C/m \(BH.BE+HC.EC=BC^2\)
b) C/m \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\)
c) C/m H là giao điểm của các đường phân giác của \(\Delta DEF\)
Cho tam giác ABC cân tại A, ba đường cao AD,BE,CF. Đường thẳng qua B và song song với CF cắt AC tại H. C/m:
a) AC2 = AH.AE (không cần làm vì mình làm rồi)
b) \(\frac{1}{CF^2}=\frac{1}{BC^2}+\frac{1}{4AD^2}\)
cho tam giác abc nhọn, góc b=60 độ , đường cao ah. Đường thẳng qua c vuông góc với ac cắt ah tại d. Gọi e và f lần lượt là hình chiếu của h trên ac và cd. cho ah=3cm ac=5cm tính hc hd cd
làm và vẽ giúp e hình luôn ạ em cảm ơn nhiều
Cho tam giác ABC vuông tại A có AB<AC, đường cao AH(H thuộc BC). Trên tia HC, lấy D sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E.
a) Chứng minh tam giác ABE vuông cân
b) Cho M là trung điểm của BE và vẽ tia AM cắt BC tại G. Chứng minh:
\(\frac{GB}{GC}=\frac{DH}{AH+CH}\)
1. cho tam giác ABC vuông cân tại A, đường cao AH= 2cm. Tính độ dài mỗi cạnh A
2. cho hình vuông ABC D, qua A vẽ đường thẳng cách cạnh BC vad cắt đường thẳng DC lần lượt tại E và F. Vẽ đường thẳng Ax vuông góc AF cắt đường thẳng DC tại G. ch/m:
a, ΔADG = ΔABE
b, \(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AF^2}\)
Cho tam giác ABC vuông tại A (AB < AC) đường cao AH, các đường phân giác trong BE, CF cắt nhau tại I, gọi M,N lần lượt là chân đường cao hạ từ E, F lên BC, K là giao điểm của AN với BI, L là giao điểm của AM với CI, D là chân đường cao hạ từ I lên BC.
1. CM: Tam giác DKL vuông cân
2. CM: AI2 = HK2 + HL2
3. Gọi AH cắt EF tại S. CM: DKSL là hình vuông
Cho ΔABC vuông tại A, đường cao AH. Vẽ HD ⊥ AB tại D, HE ⊥ AC tại E. CMR
a, SADE = \(\frac{AH^3}{2BC}\)
b, \(\frac{1}{AB^5}+\frac{1}{AC^5}< \frac{1}{AH^5}\)
Cho tam giác ABC vuông tại A , AH là đường cao , góc ABC =60° . GỌI M LÀ TRUNG ĐIỂM CỦA AB , N LÀ TRUNG ĐIỂM CỦA AC . Lấy D đối xứng với H qua M và E đối xứng với H qua N. a, Chứng minh AH^2=AD. AE b, tia phân giác của góc ABC cắt AC tại K. Cm: sin góc ABC= 2sin góc ABK × cos CBK
Cho tam giác ABC vuông tại A đường cao AH. Biết AH = 6, BH = 4,5. a) Tính HC, AC. b) Tính các tỉ số lượng giác của góc C. c) Cho E, F là hình chiếu của H trên AB, AC.
chứng minh AB mũ 3 / AC mũ 3 =BE/CF