§1. Phương trình đường thẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi tiến dũng

Cho tam giác ABC biết trung điểm các cạnh ab bc ca lần lượt M(-1;-1) N(1;9) P(9;1) a, viết phương trình đường thẳng chứa cạnh AB

M là trung điểm của AB

=>\(\left\{{}\begin{matrix}x_A+x_B=2\cdot x_M=-2\\y_A+y_B=2\cdot y_M=-2\end{matrix}\right.\)(1)

N là trung điểm của BC

=>\(\left\{{}\begin{matrix}x_B+x_C=2\cdot x_N=2\\y_B+y_C=2\cdot y_N=2\cdot9=18\end{matrix}\right.\)(2)

P là trung điểm của AC

=>\(\left\{{}\begin{matrix}x_A+x_C=2\cdot9=18\\y_A+y_C=2\cdot1=2\end{matrix}\right.\)(3)

Từ (1),(2),(3) ta có hệ phương trình sau:

\(\left\{{}\begin{matrix}x_A+x_B=-2\\x_B+x_C=2\\x_C+x_A=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_A=-2-x_B\\x_C=2-x_B\\-2-x_B+2-x_B=18\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2x_B=18\\x_A=-2-x_B\\x_C=2-x_B\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_B=-9\\x_A=-2-\left(-9\right)=7\\x_C=2-\left(-9\right)=11\end{matrix}\right.\)

Từ (1),(2),(3) ta có hệ phương trình:

\(\left\{{}\begin{matrix}y_A+y_B=-2\\y_B+y_C=18\\y_A+y_C=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y_A=-2-y_B\\y_C=18-y_B\\-2-y_B+18-y_B=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2y_B=2+2-18=4-18=-14\\y_A=-2-y_B\\y_C=18-y_B\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y_B=7\\y_A=-2-7=-9\\y_C=18-7=11\end{matrix}\right.\)

vậy: A(7;-9); B(-9;7)

\(\overrightarrow{AB}=\left(-16;16\right)\)

=>VTPT là (16;16)=(1;1)

Phương trình đường thẳng AB là:

\(1\left(x-7\right)+1\left(y+9\right)=0\)

=>x-7+y+9=0

=>x+y+2=0

Nguyễn Việt Lâm
11 tháng 1 lúc 19:44

\(\overrightarrow{NP}=\left(8;-8\right)=8\left(1;-1\right)\)

Do N, P lần lượt là trung điểm của BC, CA \(\Rightarrow\) NP là đường trung bình tam giác ABC

\(\Rightarrow NP||AB\Rightarrow\) đường thẳng AB nhận \(\left(1;1\right)\) là 1 vecto pháp tuyến

Phương trình AB qua M có dạng:

\(1\left(x+1\right)+1\left(y+1\right)=0\Leftrightarrow x+y+2=0\)


Các câu hỏi tương tự
Nguyen Phuong
Xem chi tiết
Hân Amanda
Xem chi tiết
Nguyễn Ngọc
Xem chi tiết
FREESHIP Asistant
Xem chi tiết
nắng Mộtmàu_
Xem chi tiết
Phan Quỳnh Như
Xem chi tiết
tu thi dung
Xem chi tiết
tu thi dung
Xem chi tiết
Nguyễn Dương Hoàn Mỹ
Xem chi tiết