a: Ta có: \(\widehat{C}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{A}}{3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}=2\cdot\widehat{C}\\\widehat{A}=3\cdot\widehat{C}\end{matrix}\right.\)
Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow6\cdot\widehat{C}=180^0\)
\(\Leftrightarrow\widehat{C}=30^0\)
Suy ra: \(\widehat{A}=90^0\)
Xét ΔABC có \(\widehat{A}=90^0\)
nên ΔABC vuông tại A
b: Ta có: \(\widehat{B}+\widehat{C}=90^0\)
\(\widehat{HAC}+\widehat{C}=90^0\)
Do đó: \(\widehat{B}=\widehat{HAC}\)
Ta có: \(\widehat{B}+\widehat{C}=90^0\)
\(\widehat{BAH}+\widehat{B}=90^0\)
Do đó: \(\widehat{C}=\widehat{BAH}\)