Gợi ý : Lấy I là trung điểm của BC .
1: Xét tứ giác BEDC có góc BEC=góc BDC=90 độ
nên BEDC là tứ giác nội tiếp
2: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc BAD chung
Do đó: ΔADB đồng dạg với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AB*AE
Gợi ý : Lấy I là trung điểm của BC .
1: Xét tứ giác BEDC có góc BEC=góc BDC=90 độ
nên BEDC là tứ giác nội tiếp
2: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc BAD chung
Do đó: ΔADB đồng dạg với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AB*AE
Cho tam giác ABC nhọn đường tròn tâm o đường kính BC các cá cạnh AB AC theo thứ tự tại E và D, BD và CEcắt nhau tại H a) chứng minh AH vuông góc với BC b) chứng minh bốn điểm A,E,D,H cùng thuộc một đường tròn C) gọi I là tâm của đường tròn đi qua bốn điểm A,D,E,H. Chứng minh rằng ID vuông góc với OD
1. Cho tam giác ABC nội tiếp đường tròn tâm O. Tiếp tuyến tại A cắt BC tại I.
a. \(\dfrac{IB}{IC}=\dfrac{AB^2}{AC^2}\)
b. Tính IA và IC biết AB=20cm ; AC=28cm ; BC=24cm.
2. Cho đường tròn tâm O, dây cung MN, tiếp tuyến Mx. Trên tia Mx lấy điểm T sao cho MT=MN. Đường thẳng TN cắt đường tròn tại S. Chứng minh:
a. ΔSMT cân
b. \(TM^2=TF\cdot TN\)
3. Cho tam giác SBC nhọn nội tiếp đường tròn tâm O, các đường cao AD, BE và CF cắt nhau tại H và cắt đường tròn theo thứ tự tại M,N,K. Kẻ đường kính AI. Chứng minh:
a. C là điểm chính giữa của \(\widehat{MCN}\)
b. N đối xứng với H qua AC ; M đối xứng với H qua BC ; K đối xứng với H qua AB.
c. Chứng minh: tứ giác BCIM là hình thang cân
d. Gọi G là trung điểm của BC. Chứng minh: \(AH=2OG\).
e. Chứng minh: \(\dfrac{AM}{AD}+\dfrac{BN}{BE}+\dfrac{CK}{CF}=4\)
4. Cho tam giác ABC đều nội tiếp (O;R). Gọi M là một điểm bất kỳ trên cung nhỏ BC. Lấy điểm I trên dây AM sao cho MI=MB.
a. Chứng minh tam giác MBI là tam giác đều.
b. Chứng minh MA=MB+MC.
c. Gọi D là giao điểm của MA và BC. Chứng minh: \(\dfrac{1}{MD}=\dfrac{1}{MB}+\dfrac{1}{MC}\)
d. Tính tổng \(MA^2+MB^2+MC^2\) theo R
Help me mk dang can gap
Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Kẻ tiếp tuyến chung CD (CD gần B hơn A) của hai đường tròn. C thuộc (O) và D thuộc (O’). Gọi I là giao điểm của AB và CD, E là điểm đối xứng với B qua I. Chứng minh rằng: B, C, E, D là 4 đỉnh của một hình bình hành.
1. Cho tam giác ABC nội tiếp đường tròn tâm O. Tiếp tuyến tại A cắt BC tại I.
a. \(\dfrac{IB}{IC}=\dfrac{AB^2}{AC^2}\)
b. Tính IA và IC biết AB=20cm ; AC=28cm ; BC=24cm.
2. Cho đường tròn tâm O, dây cung MN, tiếp tuyến Mx. Trên tia Mx lấy điểm T sao cho MT=MN. Đường thẳng TN cắt đường tròn tại S. Chứng minh:
a. \(\Delta SMT\) cân
b. \(TM^2=TF\cdot TN\)
3. Cho tam giác SBC nhọn nội tiếp đường tròn tâm O, các đường cao AD, BE và CF cắt nhau tại H và cắt đường tròn theo thứ tự tại M,N,K. Kẻ đường kính AI. Chứng minh:
a. C là điểm chính giữa của \(\widehat{MCN}\)
b. N đối xứng với H qua AC ; M đối xứng với H qua BC ; K đối xứng với H qua AB.
c. Chứng minh: tứ giác BCIM là hình thang cân
d. Gọi G là trung điểm của BC. Chứng minh: AH=2OG.
e. Chứng minh: \(\dfrac{AM}{AD}+\dfrac{BN}{BE}+\dfrac{CK}{CF}=4\)
4. Cho tam giác ABC đều nội tiếp (O;R). Gọi M là một điểm bất kỳ trên cung nhỏ BC. Lấy điểm I trên dây AM sao cho MI=MB.
a. Chứng minh tam giác MBI là tam giác đều.
b. Chứng minh MA=MB+MC.
c. Gọi D là giao điểm của MA và BC. Chứng minh: \(\dfrac{1}{MD}=\dfrac{1}{MB}+\dfrac{1}{MC}\)
d. Tính tổng \(MA^2+MB^2+MC^2\) theo R
Cho hình thoi có góc B = 60o. Qua D vẽ một đường thẳng nằm ngoài hình thoi nhưng cắt các đường thẳng AB và BC tại E và F. Gọi K là giao điểm của AF và CE. Chứng minh rằng: AD là tiếp tuyến của đường tròn ngoại tiếp tam giác KDF
Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại điểm A.Qua A kẻ 1 cát tuyến cắt đường tròn (O)ở B,cắt đường tròn(O') ở C.Gọi BD và CE là dây cung của đường tròn (O) và(O').Biết BD song song với CE
a. So sánh các cung nhỏ AB và AE của 2 đường tròn
b.Kẻ tiếp tuyến chung trong xAx của 2 đường tròn tại A(tia Ax thuộc nửa mp bờ OO' chứa điểm D).So sánh 2 góc DAx và góc EAx',từ đó chứng minh 3 điểm A,E,D thẳng hàng
Cho 2 đường tròn ( O) và( O’) cắt nhau tại A và B. Vẽ tiếp tuyến chung ngoài CD
của hai đường tròn (C thuộc (O), D thuộc (O’)) sao cho AB cắt CD tại điểm I thỏa mãn A
nằm giữa B và I .
a. Chứng minh IC 2 = IA.IB.
b. Qua A vẽ đường thẳng song song với CD cắt BC, BD lần lượt tại E và F . Chứng minh
A là trung điểm của EF
Cho tam giác ABC nội tiếp đường tròn (O) và ( AB < AC ) . Đường tròn (I) đi qua B và C , tiếp xúc với AB tại B cắt đường thẳng AC tại D . Chứng minh rằng : OA \(\perp\) BD .