Cho tam giác ABC một đường thẳng song song với cạnh BC cắt AB tại D và AC tại E. Trên tia đối của tia CA lấy điểm F sao cho CF=BD. Gọi M là giao điểm của DF và BC Chứng minh rằng: MD/MF = AC/AB. Cho BC=8cm, BD=5cm, DE=3cm . Chứng minh tam giác ABC cân
Mik đang cần gấp!!!
Cho tam giác ABC nhọn (AB<AC) có hai đường cao BD VÀ CE cắt nhau tại H.
a) chứng minh tam giác ABD đồng dạng tam giác ACE và AExAB=ADxAC
b) chứng minh tam giác ABC đồng dạng tam giác ADE
c) đường phân giác kẻ từ A của tam giác ABC cắt DE và BC lần lượt tại M và N. Giả sử AD=1/2AB. Chứng minh M là trung điểm AN
Bài 4: Cho tam giác ABC vuông tại A đường cao AH .
a) Chứng minh tam giác AHB đồng dạng tam giác ABC
b) Gọi M , N lần lượt là trung điểm của BC và AB . Đường vuông góc BC kẻ từ B cắt MN tại I . Chứng minh
c) IC cắt AH tại O . Chứng minh O là trung điểm AH
d) Gọi K là giao điểm của CA và BI . Tính độ dài BK ,biết AB = 15 cm , AC = 20 cm .
Cho tam giác ABC nhọn ( AB < AC ) có hai đường cao BE, CF cắt nhau tại H.
Gọi D là giao điểm của AH và BC.
Chứng minh tam giác AEB đồng dạng tam giác AFC và AH. CD = HE. AC
Chứng minh DA là phân giác của góc EDF
Cho tam giác ABC vuông tại A, có đường cao AH. Gọi N là hình chiếu của H trên AC. Gọi M là trung điểm của AB, đường thẳng HM cắt đường thẳng AC tại I. Chứng minh HA và HC lần lượt là phân giác trong và phân giác ngoài của tam giác IHN.
Cho tam giác nhọn ABC, AH là đường cao. Gọi E,F lần lượt là hình chiếu của H trên cạnh AB và AC. Đường thẳng EF và BC cắt nhau tại D
a. chứng minh tam giác AFH đồng dạng tam giác AFC
b.chứng minh AH^2=AE.AB
c.chứng minh tam giác AEF đồng dạng tam giác ACB
d.Giả sử diện tích tam giacs EHF bằng ba lần diện tích tam giác DHE. tínhtỉ số HE/HF
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao AH (H thuộc BC). Gọi D là trung điểm của AB. Qua A kẻ đường thẳng vuông góc với CD cắt CD và CB lần lượt tại E và F. Gọi K là hình chiếu vuông góc của D trên BC.
1) Chứng minh rằng các tam giác ADE và CDA đồng dạng với nhau.
2) Chứng minh rằng BD.BC = BE.CD.