Ta có:
SDEF/SABC=DC/BC.EF/EC.EB/AB(tự CM)
Mà DC/DB=AC/AB(t/c tia phân giác)
suy ra DC/BC=AC/AB+AC=b/a+b
CMTT:EB/AB=a/b+a
Ta có EF/EC=AE/AC+AE
suy ra : EF/EC=c/a+b+c
suy ra SDEF/SABC=abc/(a+b)^2(a+b+c)
làm hơi vội nên có thể tính sai
Ta có:
SDEF/SABC=DC/BC.EF/EC.EB/AB(tự CM)
Mà DC/DB=AC/AB(t/c tia phân giác)
suy ra DC/BC=AC/AB+AC=b/a+b
CMTT:EB/AB=a/b+a
Ta có EF/EC=AE/AC+AE
suy ra : EF/EC=c/a+b+c
suy ra SDEF/SABC=abc/(a+b)^2(a+b+c)
làm hơi vội nên có thể tính sai
Cho tam giác ABC, trên cạnh AB,BC lần lượt lấy E,F di động theo thứ tự trên. Gọi D là giao điểm của AF và CE . CMR S(BEF)/S(ABC)=S(DEF)/S(DAC)
Cho tam giác ABC và điểm M nằm trong tam giác. Qua M kẻ đường thẳng DE, IJ, FG tương ứng song song với các cạnh BC, CA, AB (G, I thuộc BC; E, F thuộc CA; D, I thuộc AB). Chứng minh: \(S_{AIMF}+S_{BGMD}+S_{CEMJ}\le\dfrac{2}{3}S_{ABC}\)
Cho tam giác ABC có 3 góc nhọn với đường cao AD,BE,CF cắt nhau tại H
a, Cmr : \(\Delta AEF\sim\Delta ABC;\frac{S_{AEF}}{S_{ABC}}=\cos^2A\)
b, Cmr : \(S_{DEF}=\left(1-\cos^2A-\cos^2B-\cos^2C\right).S_{ABC}\)
c, Cmr :\(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge3\)
Cho tam giác nhọn ABC có AB>AC. Gọi M là trung điểm của BC; H là trực tâm;AD,BE,CF là các đường cao của tam giác ABC. Kí hiệu (C1) và (C2) lần lượt là đường tròn ngoại tiếp tam giác A EF và DKE, với K là giao điểm của EF và BC. CMR: ME là tiếp tuyến chung của (C1) và (C2) Giúp gấp.
Cho tam giác ABC,vẽ 3 đường cao AD,BE,CF.CMR:
\(a)S_{AEF}=S_{ABC}.Cos^2A\\ b)AE.BF.CD=AB.AC.BC.CosA.CosB.CosC\\ c)\frac{S_{DEF}}{S_{ABC}}=1-\left(CosA-CosB-CosC\right)\)
Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O đường kính BC. Gọi D là trung điểm của AB, E là trọng tâm của tam giác ACD, G là giao điểm của CD và AO. Chứng minh :
a)EG // AB
b) OE ⊥ CD
c) \(S_{DAC}\) + \(s_{BDO}\) = \(\dfrac{3}{4}S_{ABC}\)
Cho tam giác ABC có 3 góc nhọn, AB < AC và 3 đường cao AD,BE,CF cùng đi qua điểm H. Gọi (S) là đường tròn ngoại tiếp tam giác DEF
1, CM đường tròn (S) đi qua trung điểm của đoạn thẳng AH
2, Gọi M,N lần lượt là giao điểm của đường tròn (S) với các đoạn BH, CH. Tiếp tuyến tại D của đường tròn (S) cắt đường thẳng MN tại T. CM đường thẳng HT song song với EF
cho tam giác abc và điểm m tuỳ ý các đoạn thẳng AM,BM,CM cắt các cạnh BC,AC,AB tại D,E,F. CMR