Cho tam giác ABC nhọn (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2. góc BME +góc B = góc ACB
c) BE=CF
Cho tam giác ABC vuông góc ở A có AB < AC . Kẻ các đườngg phân giác AM và CD của tam giác ABC. Qua D kẻ đường thẳng vuông góc BC cắt BC tại E .Trên tia đối của dia AC lấy điểm F sao cho AF = BE .
a)C/m 3 điểm E,D,F thẳng hàng
b)Từ M kẻ đường thẳng vuông góc BC cắt AC ở N . Cm MN = MB
Cho tam giác ABC ( AB<AC ), Ax là tia phân giác trong của góc A, D là trung điểm của BC. Qua D kẻ đường thẳng vuông góc với Ax, cắt đường thẳng AB và AC lần lượt tại M và N.
a) Chứng minh góc AMN = góc ANM
b) Chứng minh BM = CN
c) Biết AB = 5cm; AC= 7cm. Tính BM?
Cho tam giác ABC vuông tại A có AB nhỏ hơn AC. Gọi M là trung điểm của cạnh BC. Trên đoạn AM lấy điểm E bất kì khác A và M. Trên tia đối của tia MA lấy điểm F sao cho M là trung điểm của EF
a) Chứng minh \(\Delta BME=\Delta CMF\)
b) Từ C kẻ đường thẳng vuông góc với AC cắt tai AM tại N. Chứng minh góc ABE bằng góc NCF
Cho tam giác ABC có các góc đều nhọn và AB < AC. Phân giác góc A cắt cạnh BC tại D. Vẽ BE vuông góc với AD tại E. Tia BE cắt cạnh AC tại F
a)Chứng minh AB = AFb) Qua F vẽ đường thẳng song song với BC , cắt AE tại H lấy điểm K nằm giữa D và C sao cho FH = DK. Chứng minh: DH = KF và DH song song với KFc) Chứng minh: Góc ABC > Góc CCho tam giác ABC cân tại A. Trên cạnh BC lấy 1 điểm D( BD < DC) .Trên tia đối của tia CB lấy điểm E sao cho BD= CE. Qua D và E kẻ các đường vuông góc với BC cắt AB và AC lần lượt tại M và N.
a) Chứng minh: DM= EN
b) Gọi I là giao điểm của MN với BC. Chứng minh: I là trung điểm của MN
c) Qua I kẻ đường vuông góc với MN cắt phân giác của góc BAC tại O.
Chứng minh: tma giác ABO= ACO
d) Chứng minh: OC vuông góc với AN
Cho tam giác ABC vuông ở A, đường thẳng xy vuông góc với AC ở C. Tia phân giác của góc B cắt AC ở D và cắt xy ở E.
a, Tam giác BCE là tam giác gì? Vì sao?
b, So sánh: CE với AB; DB với DE
c, Tia Ct vuông góc với BE cắt đường thẳng AB tại M. Chứng minh MD vuông góc với BC
cho tam giác ABC ( AB khác AC ) Trung trực BC cắt phân giác của góc A tại O . Kẻ OE vuông góc AB ; OF vuông góc AC
a) chứng minh BE =CF
b) EF giao BC tại M ; EF giao Ax tại I chứng minh M trung điểm BC
Cho tam giác ABC vuông tại A , trung tuyến AM . Qua A kẻ đường thẳng vuông góc với AM cắt đường thẳng vuông góc với BC kẻ qua B tại D , cắt đường thẳng vuông góc với BC tại E . Tia EM cắt tia DB ở I . Gọi P và Q lần lượt là giao điểm của AB và AC với ME . Chứng minh rằng :
a) Tam giác MCE = Tam giác MBI
b) Tam giác DIE cân
c) DE = BD + CE
d) PQ song song BC và PQ = 1/2 BC