Cho tam giác ABC (AB < AC) có ba đường cao AD, BE, CF cắt nhau tại H.
a) CM: AFH đồng dạng ADB.
b) CM: BH.HE = CH.HF
c) CM: AEF đồng dạng ABC.
d) Gọi I là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HI, đường thẳng này cắt đường thẳng AB tại M và cắt đường thẳng AC tại N. Chứng minh: MH = HN.
a)
\(\Delta{AFH}\) và \(\Delta{ADB}\) có:
\(\widehat{AFH}=\widehat{ADB} = 90^0\)
\(\widehat{A}\) chung
\(\Rightarrow\)\(\Delta{AFH}\)\(\sim\)\(\Delta{ADB}\)(gn)
b) \(\Delta{BHF}\) và \(\Delta{CHE}\) có:
\(\widehat{BFH}=\widehat{CEH}=90^0\)
\(\widehat{BHF}=\widehat{CHE}\) (đối đỉnh)
\(\Rightarrow\)\(\Delta{BHF}\)\(\sim\)\(\Delta{CHE}\) (gn)
\(\Rightarrow\dfrac{BH}{CH}=\dfrac{HF}{HE}\)
hay \(BH\cdot HE=CH\cdot HF\)
c) \(\Delta{ABE}\) và \(\Delta{ACF}\) có:
\(\widehat{AEB}=\widehat{AFC}=90^0\)
\(\widehat{A}\) chung
\(\Rightarrow\)\(\Delta{ABE}\)\(\sim\)\(\Delta{ACF}\)(gn)
\(\Rightarrow\dfrac{AE}{AF}=\dfrac{AB}{AC}\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\Delta{AFE}\) và \(\Delta{ACB}\)có:
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\widehat{A}\) chung
\(\Rightarrow\)\(\Delta{AFE}\)\(\sim\)\(\Delta{ACB}\)(c.g.c)