Ta có: ΔABD vuông tại D
mà DM là trung tuyến
nên MB=MD
=>góc MBD=góc MDB
Ta có;ΔODH cân tại O
nên góc ODH=góc OHD
góc MDO=góc MDH+góc ODH
=góc MBD+góc OHD
=90 độ
=>MD là tiếp tuyến của (O)
Ta có: ΔABD vuông tại D
mà DM là trung tuyến
nên MB=MD
=>góc MBD=góc MDB
Ta có;ΔODH cân tại O
nên góc ODH=góc OHD
góc MDO=góc MDH+góc ODH
=góc MBD+góc OHD
=90 độ
=>MD là tiếp tuyến của (O)
Cho tam giác ABC, đường cao BE, CF cắt nhau tại H. M là trung điểm của AH. Chứng minh rằng ME, MF là tiếp tuyến của đường tròn đường kính BC.
Cho tam giác ABC vuông tại A . Đường cao AH.Gọi D là điểm đối xứng của H qua AB, E là điểm đối xứng của H qua AC a) Tìm số điểm chung của đường thẳng BD, của đường thẳng CE với đường tròn tâm A, bán kính AH. b) Chứng minh các điểm D,A,E thẳng hàng c) Xác định vị trú tương đối của đường thẳng DE với đường tròn đường kính BC
cho tam giác ABC vuông tại A(AB<AC), đường cao AH. Gọi E là điểm đối xứng với B qua H. Đường tròn đường kính EC cắt AC ở K. C/m: HK là tiếp tuyến của đường tròn
Cho nửa đường tròn tâm O, đường kính AB. Qua điểm C thuộc nửa đường tròn, kẻ tiếp tuyến d của đường tròn. Gọi E và F lần lượt là chân các đường vuông góc kẻ từ A và B đến d. Gọi H là chân đường vuông góc kẻ từ C đến AB . Chứng minh rằng :
a) CE = CF
b) AC là tia phân giác của góc BAE
c) \(CH^2=AE.BF\)
Cho tam giác ABC có hai đường cao BD và CE cắt nhau tại H
a, Chứng minh rằng 4 điểm A, D, H, E cùng nằm trên một đường tròn (gọi tâm của nó là O)
b, Gọi M là trung điểm của BC. Chứng minh rằng ME là tiếp tuyến của đường tròn O
Cho tam giác ABC nhọn , dựng đường tròn tâm O đường kính BC , đường tròn (O) cắt các cạnh AB , AC lần lượt tại M và N , BN cắt CM tại H . Chứng minh AH vuông góc với BC
Bài 1.Trên mặt phẳngtọa độ có đường tròn tâm M, bán kính 3 cm. Tọa độ điểm M là (3; -2). Đường tròn tâm M có vị trí như thế nào đối với các trục tọa độ?
Bài 2.Cho đường tròn tâm O bán kính 6cm, và một điểm A cách O là 10cm. Kẻ tiếp tuyến AB với đường tròn trong đó B là tiếp điểm. Tính độ dài đoạn AB.
Cho nửa đường tròn (O;\(\dfrac{AB}{2}\)), Ax là tiếp tuyến của nữa đường tròn (Ax và nữa đường tròn cùng phía với AB). C là 1 điểm thuộc nữa đường tròn H là hình chiếu của C trên AB. Đường thẳng qua O và vuông góc với AC cắt Ax tại M. Gọi I là giao điểm của MB và CH. C/m: CI=IH
cho tam giác ABC vuông tại B có AC=5cm, góc BAC bằng 60 độ, đường cao BH. Vẽ đường tròn tâm O đường kính BH, đường tròn (O) cắt BA tại M ( M khác B). Tính độ dài AB