Cho x > 0, y>0 và thỏa mãn x+y \(\le1\) . Tính giá trị nhỏ nhất của biểu thức:
A = \(\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy\)
- Hướng dẫn mình thôi nhé !!
Cho hai biểu thức A=\(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)và B=\(\dfrac{x-5}{x-1}\)-\(\dfrac{2}{\sqrt{x}+1}\)+\(\dfrac{4}{\sqrt{x}-1}\)với x≥0;x≠1
1. Tính giá trị của biểu thức A tại x=36
2.Chứng minh rằng B=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
3. Đặt P=A/B.Tìm các giá trị x nguyên để \(\sqrt{P}\)<1/2
Gọi \(x_1;x_2\) là hai nghiệm của phương trình \(2012x^2-\left(20a-11\right)x-2012=0\) (a là số thực). Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{3}{2}\left(x_1-x_2\right)^2+2\left(\dfrac{x_1-x_2}{2}+\dfrac{1}{x_1}-\dfrac{1}{x_2}\right)^2\)
Câu 1: Cho hàm số y = 2x\(^2\)
a) Hãy lập bảng tính các giá trị f(-5), f(-3), f(0), f(3), f(5)
b) Tìm x biết f(x) = 8, f(x) = 6 - 4\(\sqrt{2}\)
Câu 2: Cho hàm số y = f(x) = \(\dfrac{1}{3}x^2\)
Tìm các giá trị của x, biết rằng \(y=\dfrac{1}{27}\). Cũng câu hỏi tương tự với y = 5
Câu 1: Cho hàm số y = (3m + 5) x\(^2\) với m \(\ne\) \(\dfrac{-5}{3}\). Tìm các giá trị của tham số m để hàm số:
a) Nghịch biến với mọi x > 0
b) Đồng biến với mọi x >0
c) Đạt giá trị lớn nhất là 0
d) Đạt giá trị nhỏ nhất là 0
Câu 2: Cho hàm số y = \(\left(\sqrt{3k+4}-3\right)x^2\) với k \(\ge\dfrac{-4}{3}\); k \(\ne\dfrac{5}{3}\)
Tính các giá trị của tham số K để hàm số:
a) Nghịch biến với mọi x >0
b) Đồng biến với mọi x >0
a) Chứng minh với mọi số thực a,b,c a có \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}\)
b) Cho 3 số dương x,y,z thỏa mãn điều kiện x+y+z=3/4. Chứng minh:
\(6\left(x^2+y^2+z^2\right)+10\left(xy+yz+zx\right)+2\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\ge9\)
Đẳng thức xảy ra khi nào?
P=[\(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\)] :\(\dfrac{\sqrt{x}-1}{2}\)
a)Rút gọn biểu thức trên
b)Chứng minh rằng P > 0 với mọi x≥ 0 và x ≠ 1.
Cho biểu thức A= \(\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\dfrac{2x+\sqrt{x}}{\sqrt{x}}\)
a, Tìm đkxđ
b, Rút gọn
c, CHo x>1. Chứng minh A- giá trị tuyệt đối A = 0