Ta có x2≥x với x≥0⇒\(\sqrt{x^2}\ge\sqrt{x}\Rightarrow x\ge\sqrt{x}\)
Ta có x2≥x với x≥0⇒\(\sqrt{x^2}\ge\sqrt{x}\Rightarrow x\ge\sqrt{x}\)
Với x ≥ 0 ; x ≠ 9. Cho P=\(\dfrac{\sqrt{x}+3}{\sqrt{x}+8}\)
a. So sánh P với 1, so sánh P với 2
b. Với x ≥ 0 ; x ≠ 9. Chứng minh P>P2
c. Tìm x để 2P2<P
Mong các bạn giúp
Thanks
Bài 1: Tìm các số thực a \(\ge\)0 sao cho E = \(\frac{\sqrt{x}}{x\sqrt{x}-2\sqrt{x}+2}\) nhận giá trị là số nguyên.
Bài 2: Cho các số thực x \(\ge\)-1,y \(\ge\)-1, z \(\ge\) -1 thỏa mãn
\(\left\{{}\begin{matrix}\sqrt{x+1}+\sqrt{y+2}+\sqrt{z+3}=\sqrt{y+1}+\sqrt{z+2}+\sqrt{x+3}\\\sqrt{y+1}+\sqrt{z+2}+\sqrt{x+3}=\sqrt{z+1}+\sqrt{x+2}+\sqrt{y+3}\end{matrix}\right.\)
Chứng minh rằng x = y = z
CẦN GẤP AH! THKS!
Bài 8. Cho M = \(\dfrac{\sqrt{x}+5}{\sqrt{x}+1}\) với 𝑥 ≥ 0; 𝑥 ≠ 1. Tìm số thực x để M có giá trị nguyên
Bài 9. Cho P = \(\dfrac{\sqrt{x}+7}{\sqrt{x}+2}\) với x ≥ 0; x ≠ 1. Tìm các số thực x để P có giá trị là số nguyên.
B = (sqrt(x + 1))/(sqrt(x) + 2) A = (sqrt(x) - 3)/(sqrt(x) + 2) + (sqrt(x))/(sqrt(x) - 2) - (6 + sqrt(x))/(x - 4) và với x>0, x ne4 a) Tính giá trị của biểu thức B tại x = 9 b) Rút gọn biểu thức A . c) Cho P = A/R So sánh P với 2.
Cho các biểu thức \(A=\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\); \(B=\dfrac{\sqrt{x}}{x+\sqrt{x}}\); \(P=\dfrac{A}{B}\); \(x>0\)
a) Rút gọn biểu thức P và tính giá trị của P khi x = 4.
b) Tìm các giá trị của x để \(A\le3B\)
c) So sánh B với 1
d) Tìm x thỏa mãn: \(P\sqrt{x}+\left(2\sqrt{5}-1\right)\sqrt{x}=3x-2\sqrt{x-4}+3\)
e) Tìm giá trị nhỏ nhất của P.
f) Tìm các giá trị nguyên của x để P nhận giá trị là số nguyên.
Cho A = ( \(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\) + \(\dfrac{x\sqrt{x}-y\sqrt{y}}{y-x}\) ) : \(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\) với x \(\ge\) 0, y \(\ge\) 0, x \(\ne\) y
Rút gọn A
A = \(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\) với x > 0, và x \(\ne\) 4
a) Rút gọn A
b) So sánh A với 1.
c) Tìm tất cả các giá trị nguyên để A nhận giá trị nguyên.
Cho A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)với x\(\ge\)0;x\(\ne\)1
a.Rút gọn A
b.Tính giá trị của A khi x= 4+2\(\sqrt{3}\)
Cho A=\(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)với x\(\ge\)0;x\(\ne\)1
a.Rút gọn A
b.Tìm x để A=-6