cho x,y>0.Tìm GTNN của biểu thức Q=\(\frac{\left(x+y\right)^3}{xy^2}\)
Cho x,y là hai số thực thỏa mãn \(x+y\ge2\) . Tìm GTNN của biểu thức\(P=3\left(x^4+y^4+x^2y^2\right)-2\left(x^2+y^2\right)+1\)
Cho x,y,z là các số thực dương thỏa mãn \(x\left(3-xy-xz\right)+y+6z\le5xz\left(y+z\right)\). GTNN của biểu thức P=3x+y+6z
1) Xét dấu của biểu thức \(f\left(x\right)=\frac{\left(x-1\right)^5\left(2x+5\right)^{2014}}{x^9\left(-x+3\right)^{2015}}\)
2) Chứng minh rằng phương trình \(\left(m-1\right)x^2+\left(3m-2\right)x+3-2m=0\) luôn có nghiệm với mọi giá trị thực của tham số m
3) Xác định tham số m để hàm số \(y=\sqrt{\frac{-2016x^4-1}{\left(m+1\right)x^2+2\left(m+1\right)x-m-3}}\) có tập xác định D = R
Tìm GTNN của biểu thức \(A=\sqrt{2x+5}+\sqrt{4-3x}\left(x\in\left[\frac{-5}{2};\frac{4}{3}\right]\right)\)
Cho x,y,z là các số thực dương thỏa mãn x + y + xyz = z. tìm giá trị lớn nhất của biểu thức
\(P=\frac{2x}{\sqrt{\left(x^2+1\right)^3}}+\frac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)
Cho x,y,z là các số thực dương thỏa mãn x + y + xyz = z. tìm giá trị lớn nhất của biểu thức
\(P=\frac{2x}{\sqrt{\left(x^2+1\right)^3}}+\frac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)
cho các số x,y,z thỏa mãn 0<x<y<z tìm gtnn của P=\(\frac{x^3z}{y^2\left(xz+y^2\right)}+\frac{y^4}{z^2\left(xz+y^2\right)}+\frac{z^3+15x^3}{x^2z}\)
Xét các số thực dương x,y,z thõa mãn điều kiện xyz=1 Tìm GTLN của biểu thức :
\(P=\frac{1}{x^3\left(y^3+z^3\right)+1}+\frac{1}{y^3\left(z^3+x^3\right)+1}+\frac{1}{z^3\left(x^3+y^3\right)+1}\)