Bài tập cuối chương 4

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quốc Đạt

Cho S1, S2 là diện tích các hình phẳng được mô tả trong Hình 3. Tính \(\dfrac{S_1}{S_2}\).

Nguyễn Quốc Đạt
29 tháng 10 2024 lúc 23:13

Diện tích \({S_1} + {S_2}\) chính là diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y =  - {x^2} + 4x\), trục hoành và các đường thẳng \(x = 0\), \(x = 4\). Do đó

 \({S_1} + {S_2} = \int\limits_0^4 {\left( { - {x^2} + 4x} \right)dx}  = \left. {\left( {\frac{{ - {x^3}}}{3} + 2{x^2}} \right)} \right|_0^4 = \frac{{32}}{3}\).

Hình phẳng \({S_1}\) được giới hạn bởi các đồ thị hàm số \(y =  - {x^2} + 4x\), \(y = x\) và các đường thẳng \(x = 0\), \(x = 3\). Do đó

\({S_1} = \int\limits_0^3 {\left[ {\left( { - {x^2} + 4x} \right) - x} \right]dx}  = \int\limits_0^3 {\left( { - {x^2} + 3x} \right)dx}  = \left. {\left( { - \frac{{{x^3}}}{3} + \frac{{3{x^2}}}{2}} \right)} \right|_0^3 = \frac{9}{2}\).

Suy ra \({S_2} = \frac{{32}}{3} - \frac{9}{2} = \frac{{37}}{6}\) và \(\frac{{{S_1}}}{{{S_2}}} = \frac{9}{2}:\frac{{37}}{6} = \frac{{27}}{{37}}\)